scholarly journals Photocatalytic degradation of VOCs from air stream using Mo:TiO2/GAC nanocomposites

Author(s):  
Kamaladdin Abedi ◽  
Behzad Shahmoradi ◽  
Ebrahim Mohammadi ◽  
Kitirote Wantala ◽  
Afshin Maleki ◽  
...  

Abstract Modification of TiO2 is one of the techniques used to enhance its photodegradation efficiency and to make it visible-light-active. In this study, Mo-doped TiO2 nanoparticles were synthesized using a fast sol-gel technique, and then coated on granular activated carbon (GAC) as both substrate and adsorbent to obtain Mo:TiO2/GAC composite. The fabricated composite was characterized using powder XRD, SEM, EDAX, FTIR, and BET analysis. Then the composite was applied to photodegrade volatile organic compounds (VOCs) under both UV and visible light irradiation. The characterization results showed high crystallinity and purity. Mo:TiO2/GAC composite had higher photodegradation efficiency compared with bare TiO2 and bare GAC. Moreover, studying operational parameters showed that the optimum condition for photodegradation efficiency of VOCs was at flowrate of 1 l/min, VOCs concentration of 20 ppm, and light intensity of 400 and 600 W/m2 for UV and visible light respectively. The results suggest that Mo:TiO2/GAC is a visible-light-active composite and can be acceptably used to decompose VOCs under visible light with adequate efficiency and without the generation of harmful by-products such as O3 as compared with UV.

2019 ◽  
Vol 233 (5) ◽  
pp. 595-607 ◽  
Author(s):  
Mohsin Siddique ◽  
Noor Muhammad Khan ◽  
Muhammad Saeed

Abstract Nanosized, magnetically separable bismuth ferrite (BFO) nanoparticles, pertaining a crystallite size in the range of 14–15 nm were prepared via facile sol-gel technique. The product was characterized by scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The product was explored for the photocatalytic mineralization of rhodamine B (RB) dye in aqueous medium. The effect of different investigational parameters such as amount of photocatalyst, initial dye concentration and irradiation time on the photocatalytic degradation of RB was studied. The results reveal that the catalyst shows good degrading ability under normal pH and visible light conditions. BFO nanoparticles demonstrated a strong absorption ability in the visible-light region, which lead to efficient photocatalytic degradation of RB dye The reaction system was heterogeneous in nature in which the catalyst can be separated by a normal magnet.


2020 ◽  
Vol 20 ◽  
pp. 100512 ◽  
Author(s):  
S. Panimalar ◽  
R. Uthrakumar ◽  
E.Tamil Selvi ◽  
P. Gomathy ◽  
C. Inmozhi ◽  
...  

2019 ◽  
Vol 118 ◽  
pp. 01005
Author(s):  
Ying-ying Li ◽  
Jin-zhou Li ◽  
Yong-chun Liu

A series of La1-xCexNiO3 photocatalysts with different content of cerium element have been synthesized by sol-gel method. The as-prepared products were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activities of these La1-xCexNiO3 composites under visible-light irradiation were evaluated by the degradation of methyl orange (MO). The effect of important operational parameters such as catalyst amount, reaction temperature, irradiation time, and comparison of photocatalytic activity with different dyes including methyl orange, alizarin red, alizarin yellow, xylenol orange were also studied. The results revealed that the La0.8Ce0.2NiO3 (LCNO) composites exhibited much higher photocatalytic activities than pure LaNiO3 (LNO).


2020 ◽  
Vol 44 (37) ◽  
pp. 15895-15907
Author(s):  
V. Suba ◽  
M. Saravanabhavan ◽  
Lakkaboyana Sivarama Krishna ◽  
Shaik Kaleemulla ◽  
E. Ranjith Kumar ◽  
...  

The present study focuses on the synthesis of visible light active curcumin supported TiO2/AC (curcumin–TiO2/AC) through sol–gel and wet impregnation methods for the decolourization of Reactive Blue 160.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250030 ◽  
Author(s):  
TESHOME ABDO SEGNE ◽  
SIVA RAO TIRUKKOVALLURI ◽  
SUBRAHMANYAM CHALLAPALLI

The advantage of doping of TiO2 with copper has been utilized for enhanced degradation of pesticide under visible light irradiation. The sol–gel method has been undertaken for the synthesis of copper-doped TiO2 by varying the dopant loadings from 0.25 wt.% to 1.0 wt.% of Cu2+ . The doped samples were characterized by UV-Visible Diffuse Reflectance Spectroscopy (DRS), N2 adsorption–desorption (BET), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectrometry (EDS). The photocatalytic activity of the catalyst was tested by degradation of dichlorvos under visible light illumination. The results found that 0.75 wt.% of Cu2+ doped nanocatalysts have better photo catalytic activity than the rest of percentages doped, undoped TiO2 and Degussa P25. The reduction of band gap was estimated and the influence of the process parameters on photo catalytic activity of the catalyst has been explained.


2013 ◽  
Vol 94 ◽  
pp. 147-149 ◽  
Author(s):  
Juan Lu ◽  
Lianghai Li ◽  
Zuoshan Wang ◽  
Biao Wen ◽  
Jialei Cao

ChemInform ◽  
2013 ◽  
Vol 44 (27) ◽  
pp. no-no
Author(s):  
J. R. Reddy ◽  
G. Ravi ◽  
Naveen Kumar Veldurthi ◽  
Radha Velchuri ◽  
Someshwar Pola ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Quanjie Wang ◽  
Yanqing Wang ◽  
Baorong Duan ◽  
Mengmeng Zhang

Multiwalled carbon nanotube (MWCNT) enhanced MWCNT/TiO2nanocomposites were synthesized by surface coating of carbon nanotube with mixed phase of anatase and rutile TiO2through a modified sol-gel approach using tetrabutyl titanate as raw material. The morphological structures and physicochemical properties of the nanocomposites were characterized by FT-IR, XRD, DTA-TG, TEM, and UV-Vis spectra. The results show that TiO2nanoparticles with size of around 15 nm are closely attached on the sidewall of MWCNT. The nanocomposites possess good absorption properties not only in the ultraviolet but also in the visible light region. Under irradiation of ultraviolet lamp, the prepared composites have the highest photodegradation efficiency of 83% within 4 hours towards the degradation of Methyl Orange (MO) aqueous solution. The results indicate that the carbon nanotubes supported TiO2nanocomposites exhibit high photocatalytic activity and stability, showing great potentials in the treatment of wastewater.


Author(s):  
Narjes Esmaeili ◽  
Azadeh Ebrahimian Pirbazari ◽  
Ziba Khodaee

In this research, first a binary nanocomposite of magnetic recyclable photocatalyst Fe3O4/TiO2, was synthesized by sol gel technique. Then, in order to enhance the photocatalytic activity of the synthesized nanocomposite, it was deposited by silver nanoparticles for using in degradation of organic pollutants 2, 4-dichlorophenol (2, 4-DCP) under visible light. A range of analytical techniques including XRD, FESEM/EDX, DRS, VSM and N2 physisorption were employed to reveal the crystal structure, morphology and property of the nanocomposites. We obtained 32% and 55% degradation of 2, 4-DCP under visible light after 180 min irradiation in the presence of Fe3O4/TiO2 and Fe3O4/TiO2/Ag respectively. Thus, the excellent visible light photocatalytic activity of Fe3O4/TiO2/Ag sample can be attributed to the surface plasmon resonance effect of Ag nanoparticles deposited on Fe3O4/TiO2 nanocomposite.


Sign in / Sign up

Export Citation Format

Share Document