What was learned from Mt Pinatubo eruption in 1991

Author(s):  
Edward Wolf
Keyword(s):  
2021 ◽  
Author(s):  
Rafael Castro ◽  
Tushar Mittal ◽  
Stephen Self

<p>The 1883 Krakatau eruption is one of the most well-known historical volcanic eruptions due to its significant global climate impact as well as first recorded observations of various aerosol associated optical and physical phenomena. Although much work has been done on the former by comparison of global climate model predictions/ simulations with instrumental and proxy climate records, the latter has surprisingly not been studied in similar detail. In particular, there is a wealth of observations of vivid red sunsets, blue suns, and other similar features, that can be used to analyze the spatio-temporal dispersal of volcanic aerosols in summer to winter 1883. Thus, aerosol cloud dispersal after the Krakatau eruption can be estimated, bolstered by aerosol cloud behavior as monitored by satellite-based instrument observations after the 1991 Pinatubo eruption. This is one of a handful of large historic eruptions where this analysis can be done (using non-climate proxy methods). In this study, we model particle trajectories of the Krakatau eruption cloud using the Hysplit trajectory model and compare our results with our compiled observational dataset (principally using Verbeek 1884, the Royal Society report, and Kiessling 1884).</p><p>In particular, we explore the effect of different atmospheric states - the quasi-biennial oscillation (QBO) which impacts zonal movement of the stratospheric volcanic plume - to estimate the phase of the QBO in 1883 required for a fast-moving westward cloud. Since this alone is unable to match the observed latitudinal spread of the aerosols, we then explore the impact of an  umbrella cloud (2000 km diameter) that almost certainly formed during such a large eruption. A large umbrella cloud, spreading over ~18 degrees within the duration of the climax of the eruption (6-8 hours), can lead to much quicker latitudinal spread than a point source (vent). We will discuss the results of the combined model (umbrella cloud and correct QBO phase) with historical accounts and observations, as well as previous work on the 1991 Pinatubo eruption. We also consider the likely impacts of water on aerosol concentrations and the relevance of this process for eruptions with possible significant seawater interactions, like Krakatau. We posit that the role of umbrella clouds is an under-appreciated, but significant, process for beginning to model the climatic impacts of large volcanic eruptions.</p>


2017 ◽  
Author(s):  
Laura Revell ◽  
Andrea Stenke ◽  
Beiping Luo ◽  
Stefanie Kremser ◽  
Eugene Rozanov ◽  
...  

Abstract. To simulate the impacts of volcanic eruptions on the stratosphere, chemistry-climate models that do not include an online aerosol module require temporally and spatially resolved aerosol size parameters for heterogeneous chemistry and aerosol radiative properties as a function of wavelength. For phase 1 of the Chemistry-Climate Model Initiative (CCMI-1) and, later, for phase 6 of the Coupled Model Intercomparison Project (CMIP6) two such stratospheric aerosol data sets were compiled, whose functional capability and representativeness are compared here. For CCMI-1, the SAGE-4λ data set was compiled, which hinges on the measurements at four wavelengths of the SAGE (Stratospheric Aerosol and Gas Experiment) II satellite instrument and uses ground-based Lidar measurements for gap-filling immediately after the Mt. Pinatubo eruption, when the stratosphere was optically opaque for SAGE II. For CMIP6, the new SAGE-3λ data set was compiled, which excludes the least reliable SAGE II wavelength and uses CLAES (Cryogenic Limb Array Etalon Spectrometer) measurements on UARS, the Upper Atmosphere Research Satellite, for gap-filling following the Mt. Pinatubo eruption instead of ground-based Lidars. Here, we performed SOCOLv3 (Solar Climate Ozone Links version 3) chemistry-climate model simulations of the recent past (1986–2005) to investigate the impact of the Mt. Pinatubo eruption in 1991 on stratospheric temperature and ozone and how this response differs depending on which aerosol data set is applied. The use of SAGE-4λ results in heating and ozone loss being overestimated in the lower stratosphere compared to observations in the post-eruption period by approximately 3 K and 0.2 ppmv, respectively. However, less heating occurs in the model simulations based on SAGE-3λ, because the improved gap-filling procedures after the eruption lead to less aerosol loading in the tropical lower stratosphere. As a result, simulated temperature anomalies in the model simulations based on SAGE-3λ for CMIP6 are in excellent agreement with MERRA and ERA-Interim reanalyses in the post-eruption period. Less heating in the simulations with SAGE-3λ means that the rate of tropical upwelling does not strengthen as much as it does in the simulations with SAGE-4λ, which limits dynamical uplift of ozone and therefore provides more time for ozone to accumulate in tropical mid-stratospheric air. Ozone loss following the Mt. Pinatubo eruption is overestimated by 0.1 ppmv in the model simulations based on SAGE-3λ, which is a better agreement with observations than in the simulations based on SAGE-4λ. Overall, the CMIP6 stratospheric aerosol data set, SAGE-3λ, allows SOCOLv3 to more accurately simulate the post-Pinatubo eruption period.


2020 ◽  
Author(s):  
Juan-Carlos Antuña-Marrero ◽  
Graham W. Mann ◽  
Philippe Keckhut ◽  
Sergey Avdyushin ◽  
Bruno Nardi ◽  
...  

Abstract. A key limitation of volcanic forcing datasets for the Pinatubo period, is the large uncertainty that remains with respect to the extent of the optical depth of the Pinatubo aerosol cloud in the first year after the eruption, the saturation of the SAGE-II instrument restricting it to only be able to measure the upper part of the aerosol cloud in the tropics. Here we report the recovery of stratospheric aerosol measurements from two ship-borne lidars, both of which measured the tropical reservoir of volcanic aerosol produced by the June 1991 Mount Pinatubo eruption. The lidars were on-board two Soviet vessels, each ship crossing the Atlantic, their measurement datasets providing unique observational transects of the Pinatubo cloud across the tropics from Europe to the Caribbean (~ 40° N to 8° N) from July to September 1991 (the Prof Zubov ship) and from Europe to south of the Equator (8° S to ~ 40° N) between January and February 1992 (the Prof Vize ship). Our philosophy with the data recovery is to follow the same algorithms and parameters appearing in the two peer-reviewed articles that presented these datasets in the same issue of GRL in 1993, and here we provide all 48 lidar soundings made from the Prof. Zubov, and 11 of the 20 conducted from the Prof. Vize, ensuring we have reproduced the aerosols backscatter and extinction values in the Figures of those two papers. These original approaches used thermodynamic properties from the CIRA-86 standard atmosphere to derive the molecular backscattering, vertically and temporally constant values applied for the aerosol backscatter to extinction ratio and the correction factor of the aerosols backscattering wavelength dependence. We demonstrate this initial validation of the recovered stratospheric aerosol extinction profiles, providing full details of each dataset in this paper's Supplement S1, the original text files of the backscatter ratio, the calculated aerosols backscatter and extinction profiles. We anticipate the data providing potential new observational case studies for modelling analyses, including a 1-week series of consecutive soundings (in September 1991) at the same location showing the progression of the entrainment of part of the Pinatubo plume into the upper troposphere and the formation of an associated cirrus cloud. The Zubov lidar dataset illustrates how the tropically confined Pinatubo aerosol cloud transformed from a highly heterogeneous vertical structure in August 1991, maximum aerosol extinction values around 19 km for the lower layer and 23–24 for the upper layer, to a more homogeneous and deeper reservoir of volcanic aerosol in September 1991. We encourage modelling groups to consider new analyses of the Pinatubo cloud, comparing to the recovered datasets, with the potential to increase our understanding of the evolution of the Pinatubo aerosol cloud and its effects. Data described in this work are available at https://doi.pangaea.de/10.1594/PANGAEA.912770 (Antuña-Marrero et al., 2020).


2020 ◽  
Vol 20 (22) ◽  
pp. 13687-13700
Author(s):  
Lorenzo M. Polvani ◽  
Suzana J. Camargo

Abstract. A recent study has presented compelling new evidence suggesting that the observed Eurasian warming in the winter following the 1992 Pinatubo eruption was, in all likelihood, unrelated to the presence of volcanic aerosols in the stratosphere. Building on that study, we turn our attention to the only other low-latitude eruption in the instrumental period with a comparably large magnitude: the Krakatau eruption of August 1883. We study the temperature anomalies in the first winter following that eruption in detail, analyzing (1) observations, (2) reanalyses, and (3) models. Three findings emerge from our analysis. First, the observed post-Krakatau winter warming over Eurasia was unremarkable (only between 1σ and 2σ of the distribution from 1850 to present). Second, reanalyses based on assimilating surface pressure alone indicate the existence of very large uncertainties, so much so that a Eurasian cooling is not incompatible with those reanalyses. Third, models robustly show the complete absence of a volcanically forced Eurasian winter warming: here, we analyze both a 100-member initial-condition ensemble and 140 simulations from Phase 5 of the Coupled Model Intercomparison Project. This wealth of evidence strongly suggests that, as in the case of Pinatubo, the observed warming over Eurasia in the winter of 1883–84 was, in all likelihood, unrelated to the Krakatau eruption. This, taken together with a similar result for Pinatubo, leads us to conclude that if volcanically forced Eurasian winter warming exists at all, an eruption with a magnitude far exceeding these two events would be needed to produce a detectable surface warming.


2013 ◽  
Vol 13 (22) ◽  
pp. 11221-11234 ◽  
Author(s):  
F. Arfeuille ◽  
B. P. Luo ◽  
P. Heckendorn ◽  
D. Weisenstein ◽  
J. X. Sheng ◽  
...  

Abstract. In terms of atmospheric impact, the volcanic eruption of Mt. Pinatubo (1991) is the best characterized large eruption on record. We investigate here the model-derived stratospheric warming following the Pinatubo eruption as derived from SAGE II extinction data including recent improvements in the processing algorithm. This method, termed SAGE_4λ, makes use of the four wavelengths (385, 452, 525 and 1024 nm) of the SAGE II data when available, and uses a data-filling procedure in the opacity-induced "gap" regions. Using SAGE_4λ, we derived aerosol size distributions that properly reproduce extinction coefficients also at much longer wavelengths. This provides a good basis for calculating the absorption of terrestrial infrared radiation and the resulting stratospheric heating. However, we also show that the use of this data set in a global chemistry–climate model (CCM) still leads to stronger aerosol-induced stratospheric heating than observed, with temperatures partly even higher than the already too high values found by many models in recent general circulation model (GCM) and CCM intercomparisons. This suggests that the overestimation of the stratospheric warming after the Pinatubo eruption may not be ascribed to an insufficient observational database but instead to using outdated data sets, to deficiencies in the implementation of the forcing data, or to radiative or dynamical model artifacts. Conversely, the SAGE_4λ approach reduces the infrared absorption in the tropical tropopause region, resulting in a significantly better agreement with the post-volcanic temperature record at these altitudes.


Tellus B ◽  
1995 ◽  
Vol 47 (5) ◽  
pp. 602-606 ◽  
Author(s):  
F. J. Olmo ◽  
L. Alados-Arboledas

Nature ◽  
1995 ◽  
Vol 373 (6513) ◽  
pp. 399-404 ◽  
Author(s):  
M. Patrick McCormick ◽  
Larry W. Thomason ◽  
Charles R. Trepte

2005 ◽  
Vol 21 (7) ◽  
pp. 1019-1032 ◽  
Author(s):  
Gino Mirocle Crisci ◽  
Salvatore Di Gregorio ◽  
Rocco Rongo ◽  
William Spataro

1995 ◽  
Vol 22 (5) ◽  
pp. 607-610 ◽  
Author(s):  
H. Jäger ◽  
O. Uchino ◽  
T. Nagai ◽  
T. Fujimoto ◽  
V. Freudenthaler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document