Phantom assessment of three-dimensional geometric distortion of a dedicated wide-bore MR-simulator for radiotherapy

Author(s):  
Max W.L. Law ◽  
Jing Yuan ◽  
Oi Lei Wong ◽  
Abby D Ying ◽  
Yihang Zhou ◽  
...  

Abstract This study evaluated the machine-dependent three-dimensional geometric distortion images acquired from a 1.5T 700mm-wide bore MR-simulator based on a large geometric accuracy phantom. With the consideration of radiation therapy (RT) application requirements, every sequence was examined in various combinations of acquisition-orientations and receiver-bandwidths with console-integrated distortion correction enabled. Distortion was repeatedly measured over a six-month period. The distortion measured from the images acquired at the beginning of this period was employed to retrospectively correct the distortion in the subsequent acquisitions. Geometric distortion was analyzed within the largest field-of-view allowed. Six sequences were examined for comprehensive distortion analysis – VIBE, SPACE, TSE, FLASH, BLADE and PETRA. Based on optimal acquisition parameters, their diameter-sphere-volumes (DSVs) of CT-comparable geometric fidelity (where 1mm distortion was allowed) were 333.6mm, 315.1mm, 316.0mm, 318.9mm, 306.2mm and 314.5mm respectively. This was a significant increase from 254.0mm, 245.5mm, 228.9mm, 256.6mm, 230.8mm and 254.2mm DSVs respectively, when images were acquired using un-optimized parameters. The longitudinal stability of geometric distortion and the efficacy of retrospective correction of console-corrected images, based on prior distortion measurements, were inspected using VIBE and SPACE. The retrospectively corrected images achieved over 500mm DSVs with 1mm distortion allowed. The median distortion was below 1mm after retrospective correction, proving that obtaining prior distortion map for subsequent retrospective distortion correction is beneficial. The systematic evaluation of distortion using various combinations of sequence-type, acquisition-orientation and receiver-bandwidth in a six-month time span would be a valuable guideline for optimizing sequence for various RT applications.

Author(s):  
Badrinath Roysam ◽  
Hakan Ancin ◽  
Douglas E. Becker ◽  
Robert W. Mackin ◽  
Matthew M. Chestnut ◽  
...  

This paper summarizes recent advances made by this group in the automated three-dimensional (3-D) image analysis of cytological specimens that are much thicker than the depth of field, and much wider than the field of view of the microscope. The imaging of thick samples is motivated by the need to sample large volumes of tissue rapidly, make more accurate measurements than possible with 2-D sampling, and also to perform analysis in a manner that preserves the relative locations and 3-D structures of the cells. The motivation to study specimens much wider than the field of view arises when measurements and insights at the tissue, rather than the cell level are needed.The term “analysis” indicates a activities ranging from cell counting, neuron tracing, cell morphometry, measurement of tracers, through characterization of large populations of cells with regard to higher-level tissue organization by detecting patterns such as 3-D spatial clustering, the presence of subpopulations, and their relationships to each other. Of even more interest are changes in these parameters as a function of development, and as a reaction to external stimuli. There is a widespread need to measure structural changes in tissue caused by toxins, physiologic states, biochemicals, aging, development, and electrochemical or physical stimuli. These agents could affect the number of cells per unit volume of tissue, cell volume and shape, and cause structural changes in individual cells, inter-connections, or subtle changes in higher-level tissue architecture. It is important to process large intact volumes of tissue to achieve adequate sampling and sensitivity to subtle changes. It is desirable to perform such studies rapidly, with utmost automation, and at minimal cost. Automated 3-D image analysis methods offer unique advantages and opportunities, without making simplifying assumptions of tissue uniformity, unlike random sampling methods such as stereology.12 Although stereological methods are known to be statistically unbiased, they may not be statistically efficient. Another disadvantage of sampling methods is the lack of full visual confirmation - an attractive feature of image analysis based methods.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 464
Author(s):  
Wenjie Zhang ◽  
Tianzhong Zhao ◽  
Xiaohui Su ◽  
Baoguo Wu ◽  
Zhiqiang Min ◽  
...  

Stem analysis is an essential aspect in forestry investigation and forest management, as it is a primary method to study the growth law of trees. Stem analysis requires measuring the width and number of tree rings to ensure the accurate measurement, expand applicable tree species, and reduce operation cost. This study explores the use of Open Source Computer Vision Library (Open CV) to measure the ring radius of analytic wood disk digital images, and establish a regression equation of ring radius based on image geometric distortion correction. Here, a digital camera was used to photograph the stem disks’ tree rings to obtain digital images. The images were preprocessed with Open CV to measure the disk’s annual ring radius. The error correction model based on the least-square polynomial fitting method was established for digital image geometric distortion correction. Finally, a regression equation for tree ring radius based on the error correction model was established. Through the above steps, click the intersection point between the radius line and each ring to get the pixel distance from the ring to the pith, then the size of ring radius can be calculated by the regression equation of ring radius. The study’s method was used to measure the digital image of the Chinese fir stem disk and compare it with the actual value. The results showed that the maximum error of this method was 0.15 cm, the average error was 0.04 cm, and the average detection accuracy reached 99.34%, which met the requirements for measuring the tree ring radius by stem disk analysis. This method is simple, accurate, and suitable for coniferous and broad-leaved species, which allows researchers to analyze tree ring radius measurement, and is of great significance for analyzing the tree growth process.


2020 ◽  
Vol 47 (9) ◽  
pp. 4303-4315
Author(s):  
Mao Li ◽  
Shanshan Shan ◽  
Shekhar S. Chandra ◽  
Feng Liu ◽  
Stuart Crozier

2017 ◽  
Vol 79 (5) ◽  
pp. 2524-2532 ◽  
Author(s):  
Gabriel Nketiah ◽  
Kirsten M Selnæs ◽  
Elise Sandsmark ◽  
Jose R. Teruel ◽  
Brage Krüger‐Stokke ◽  
...  

2016 ◽  
Vol 77 (5) ◽  
pp. 1749-1761 ◽  
Author(s):  
Victor B. Xie ◽  
Mengye Lyu ◽  
Ed X. Wu

Robotica ◽  
2018 ◽  
Vol 36 (8) ◽  
pp. 1225-1243 ◽  
Author(s):  
Jose-Pablo Sanchez-Rodriguez ◽  
Alejandro Aceves-Lopez

SUMMARYThis paper presents an overview of the most recent vision-based multi-rotor micro unmanned aerial vehicles (MUAVs) intended for autonomous navigation using a stereoscopic camera. Drone operation is difficult because pilots need the expertise to fly the drones. Pilots have a limited field of view, and unfortunate situations, such as loss of line of sight or collision with objects such as wires and branches, can happen. Autonomous navigation is an even more difficult challenge than remote control navigation because the drones must make decisions on their own in real time and simultaneously build maps of their surroundings if none is available. Moreover, MUAVs are limited in terms of useful payload capability and energy consumption. Therefore, a drone must be equipped with small sensors, and it must carry low weight. In addition, a drone requires a sufficiently powerful onboard computer so that it can understand its surroundings and navigate accordingly to achieve its goal safely. A stereoscopic camera is considered a suitable sensor because of its three-dimensional (3D) capabilities. Hence, a drone can perform vision-based navigation through object recognition and self-localise inside a map if one is available; otherwise, its autonomous navigation creates a simultaneous localisation and mapping problem.


2018 ◽  
Vol 26 (10) ◽  
pp. 2555-2564
Author(s):  
丁 超 DING Chao ◽  
唐力伟 TANG Li-wei ◽  
曹立军 CAO Li-jun ◽  
邵新杰 SHAO Xin-jie ◽  
邓士杰 DENG Shi-jie

Sign in / Sign up

Export Citation Format

Share Document