Cyclic stretching of cells through substrate stretching

Author(s):  
Claudia Tanja Mierke
2008 ◽  
Vol 35 (1-3) ◽  
pp. 171-190
Author(s):  
K.A. Lazopoulos ◽  
A.K. Lazopoulos ◽  
D. Stamenovic

Living adherent cells change their orientation in response to substrate stretching such that their cytoskeletal components reorganize in a new direction. To study this phenomenon, we model the cytoskeleton as a planar system of elastic cables and struts both pinned at their endpoints to a flat flexible substrate. Tensed (pre-strained) cables represent acting stress fibers, whereas compression-bearing struts represent microtubules. We assume that in response to uniaxial substrate stretching the model reorients and deforms into a new configuration that minimizes its total potential energy. Using the Maxwell's global stability criterion, we find global minima configurations during static extension and compression of the substrate. Based on these results, we predict reorientation during cyclic stretching of the substrate. We find that in response to cyclic stretching cells either reorient transversely to the direction of stretching, or exhibit multiple configurations symmetrically distributed relative to the direction of stretching. These predictions are consistent with experimental data on living cells from the literature.


Author(s):  
Shogo Sakai ◽  
Noriaki Maeda ◽  
Junpei Sasadai ◽  
Somu Kotoshiba ◽  
Keitaro Anami ◽  
...  

1983 ◽  
Vol 35 (6) ◽  
pp. 490-497 ◽  
Author(s):  
Vikrom S. Sottiurai ◽  
Peter Kollros ◽  
Seymour Glagov ◽  
Christopher K. Zarins ◽  
Martin B. Mathews

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3277
Author(s):  
Jian Wang ◽  
Baohua Liu ◽  
Yu Cheng ◽  
Zhenwan Ma ◽  
Yanhu Zhan ◽  
...  

A flexible, wearable electronic device composed of magnetic iron oxide (Fe3O4)/reduced graphene oxide/natural rubber (MGNR) composites with a segregated network was prepared by electrostatic self-assembly, latex mixing, and in situ reduction. The segregated network offers the composites higher electrical conductivity and more reliable sensing properties. Moreover, the addi-tion of Fe3O4 provides the composites with better electromagnetic interference shielding effectiveness (EMI SE). The EMI shielding property of MGNR composites is more stable under tensile deformation and long-term cycling conditions and has a higher sensitivity to stretch strain compared with the same structure made from reduced graphene oxide/natural rubber (GNR) composites. The EMI SE value of MGNR composites reduces by no more than 2.9% under different tensile permanent deformation, cyclic stretching, and cyclic bending conditions, while that of GNR composites reduces by approximately 16% in the worst case. Additionally, the MGNR composites have a better sensing performance and can maintain stable signals, even in the case of cyclic stretching with a very small strain (0.05%). Furthermore, they can steadily monitor the changes in resistance signals in various human motions such as finger bending, wrist bending, speaking, smiling, and blinking, indicating that the MGNR composites can be used in future wearable electronic flexibility devices.


2007 ◽  
Vol 103 (3) ◽  
pp. 803-811 ◽  
Author(s):  
Rajiv Jesudason ◽  
Lauren Black ◽  
Arnab Majumdar ◽  
Phillip Stone ◽  
Bela Suki

Enzyme activity plays an essential role in many physiological processes and diseases such as pulmonary emphysema. While the lung is constantly exposed to cyclic stretching, the effects of stretch on the mechanical properties of the extracellular matrix (ECM) during digestion have not been determined. We measured the mechanical and failure properties of elastin-rich ECM sheets loaded with static or cyclic uniaxial stretch (40% peak strain) during elastase digestion. Quasistatic stress-strain measurements were taken during 30 min of digestion. The incremental stiffness of the sheets decreased exponentially with time during digestion. However, digestion in the presence of static stretch resulted in an accelerated stiffness decrease, with a time constant that was nearly 3× smaller (7.1 min) than during digestion alone (18.4 min). These results were supported by simulations that used a nonlinear spring network model. The reduction in stiffness was larger during static than cyclic stretch, and the latter also depended on the frequency. Stretching at 20 cycles/min decreased stiffness less than stretching at 5 cycles/min, suggesting a rate-dependent coupling between mechanical forces and enzyme activity. Furthermore, pure digestion reduced the failure stress of the sheets from 88 ± 21 kPa in control to 29 ± 15 kPa ( P < 0.05), while static and cyclic stretch resulted in a failure stress of 7 ± 5 kPa ( P < 0.05). We conclude that not only the presence but the dynamic nature of mechanical forces have a significant impact on enzyme activity, hence the deterioration of the functional properties of the ECM during exposure to enzymes.


2020 ◽  
Vol 8 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Zhiyong Wang ◽  
Jianhua Wu ◽  
Xiaoxiao Wei ◽  
Sidra Saleemi ◽  
Wei Liu ◽  
...  

Microstructure-reorganized behavior is where the microstructure of a material can be reorganized under some conditions, such as temperature or moisture changes, electrical or mechanical stimulation.


Author(s):  
Patrick McGarry ◽  
Robert M. McMeeking ◽  
Vikram S. Deshpande

Cytoskeletal alignment and morphological changes in cells under conditions of cyclic stretching have been reported in several in-vitro studies. Of particular interest is the experimental work of Wille et al. [1] in which the contractile response of fibroblast stress fibres was isolated and quantified by testing both untreated cells and cells treated with Cytochalasin-D.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Yuina Abe ◽  
Hajime Konno ◽  
Shotaro Yoshida ◽  
Matsuhiko Nishizawa

The electrical response of the skin to mechanical stretches is reported here. The electrical potential difference across the epidermis, i.e., transepidermal potential (TEP) of porcine skin samples subjected to cyclic stretching, was measured in real time to observe electrochemical change in epidermal tissue. In addition to a conventional method of TEP measurement for the whole of skin sample, a probe-type system with a fine-needle salt bridge was used for direct measurement of TEP at a targeted local point of the skin. TEP decreased with the increased mechanical stretches, and the change of TEP was found to be mostly occurred in the epidermis but not dermis nor hypodermis by comparing the results of conventional and the probe-type methods. The observed change of TEP value was quick, reversible, and strain-dependent. Considering from such characteristic behaviors, one of the possible mechanisms of the modulation of TEP would be influence of the streaming potential caused by the fluid flow during the physical deformation of the epidermis.


Sign in / Sign up

Export Citation Format

Share Document