Rapid Fabrication of Multilayer Microfluidic Devices Using the Liquid Crystal Display-Based Stereolithography 3D Printing System

2017 ◽  
Vol 4 (3) ◽  
pp. 156-164 ◽  
Author(s):  
Zongjie Wang ◽  
Nicholas Martin ◽  
Delator Hini ◽  
Barry Mills ◽  
Keekyoung Kim

2019 ◽  
Vol 3 (1) ◽  
pp. 26 ◽  
Author(s):  
Mohamed Mohamed ◽  
Hitendra Kumar ◽  
Zongjie Wang ◽  
Nicholas Martin ◽  
Barry Mills ◽  
...  

With the dramatic increment of complexity, more microfluidic devices require 3D structures, such as multi-depth and -layer channels. The traditional multi-step photolithography is time-consuming and labor-intensive and also requires precise alignment during the fabrication of microfluidic devices. Here, we present an inexpensive, single-step, and rapid fabrication method for multi-depth microfluidic devices using a high-resolution liquid crystal display (LCD) stereolithographic (SLA) three-dimensional (3D) printing system. With the pixel size down to 47.25 μm, the feature resolutions in the horizontal and vertical directions are 150 μm and 50 μm, respectively. The multi-depth molds were successfully printed at the same time and the multi-depth features were transferred properly to the polydimethylsiloxane (PDMS) having multi-depth channels via soft lithography. A flow-focusing droplet generator with a multi-depth channel was fabricated using the presented 3D printing method. Experimental results show that the multi-depth channel could manipulate the morphology and size of droplets, which is desired for many engineering applications. Taken together, LCD SLA 3D printing is an excellent alternative method to the multi-step photolithography for the fabrication of multi-depth microfluidic devices. Taking the advantages of its controllability, cost-effectiveness, and acceptable resolution, LCD SLA 3D printing can have a great potential to fabricate 3D microfluidic devices.



RSC Advances ◽  
2018 ◽  
Vol 8 (66) ◽  
pp. 37693-37699 ◽  
Author(s):  
Dong-Heon Ha ◽  
Dong-Hyeon Ko ◽  
Jin-oh Kim ◽  
Do Jin Im ◽  
Byoung Soo Kim ◽  
...  

Rapid on-demand sacrificial printing techniques using suitable combinations of resin and sacrificial materials would be desirable to fabricate versatile and functional microfluidic devices with complex designs and chemical resistance.





Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1594 ◽  
Author(s):  
Claudio Tosto ◽  
Eugenio Pergolizzi ◽  
Ignazio Blanco ◽  
Antonella Patti ◽  
Paul Holt ◽  
...  

Epoxy-based blends printable in a Liquid Crystal Display (LCD) printer were studied. Diglycidyl ether of bisphenol A (DGEBA) mixed with Diethyltoluene diamine (DETDA) was used due to the easy processing in liquid form at room temperature and slower reactivity until heated over 150 ° C. The DGEBA/DETDA resin was mixed with a commercial daylight photocurable resin used for LCD screen 3D printing. Calorimetric, dynamic mechanical and rheology testing were carried out on the resulting blends. The daylight resins showed to be thermally curable. Resin’s processability in the LCD printer was evaluated for all the blends by rheology and by 3D printing trials. The best printing conditions were determined by a speed cure test. The use of a thermal post-curing cycle after the standard photocuring in the LCD printer enhanced the glass transition temperature T g of the daylight resin from 45 to 137 ° C when post-curing temperatures up to 180 ° C were used. The T g reached a value of 174 ° C mixing 50 wt% of DGEBA/DETDA resin with the photocurable resin when high temperature cure cycle was used.



2020 ◽  
Vol 7 (10) ◽  
pp. 105305 ◽  
Author(s):  
Wubin Shan ◽  
Yifan Chen ◽  
Mo Hu ◽  
Shigang Qin ◽  
Peng Liu


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1346
Author(s):  
Junyang Shan ◽  
Zijun Yang ◽  
Guoguang Chen ◽  
Yang Hu ◽  
Ying Luo ◽  
...  

In this work, aiming at a UV-curing 3D printing process with liquid crystal display (LCD) irradiation, a novel free-radical/cationic hybrid photosensitive resin was designed and prepared. After testing, the results showed that the acrylate monomers could be polymerized through a free-radical mechanism, while the epoxides were polymerized by a cationic curing mechanism. During the process of UV-curing, the acrylate and epoxide polymers were crosslinked and further locked together by non-covalent bonds. Therefore, an interpenetrating polymer network (IPN) structure could be formed through light-curing 3D-printing processes. Fourier transform infrared spectroscopy (FT-IR) revealed that the 3,4-epoxy cyclohexyl methyl-3,4-epoxy cyclohexyl formate and acrylic resin were both successfully involved in the UV-curing process. Furthermore, in order to make the 3D-printed objects cured completely, post-processing was of great importance. The results from the systematic study of the dynamic mechanical properties of the printed objects showed that the heating treatment process after UV irradiation was very necessary and favorable for the complete cationic polymerization of UV-6110 induced by Irgacure 261. The optimum heating treatment conditions were achieved at a temperature of 70 °C for 3 h.



2021 ◽  
Vol 597 ◽  
pp. 120303
Author(s):  
Iakovos Xenikakis ◽  
Konstantinos Tsongas ◽  
Emmanouil K. Tzimtzimis ◽  
Constantinos K. Zacharis ◽  
Nikoleta Theodoroula ◽  
...  


Author(s):  
Wubing Shan ◽  
Yifan Chen ◽  
Hu Mo ◽  
Shigang Qin ◽  
Peng Liu

In this study, we report a new epoxy acrylate based shape memory polymer(SMP) fabricated by Liquid crystal display (LCD) Stereolithographic 3D printing. The printed 3D object has a high resolution and high transparency in visible light region. The uniaxial tensile tests showed enhanced tensile toughness and tunable mechanical properties. The fix-recovery and cycle tests indicated high shape recovery properties including high shape recovery rate and excellent cycling stability. In addition, a smart electrical valve actuator was fabricated that can be used in fast heat or electricity responsive electrical circuits. LCD 3D printing provides a low-cost and high efficient way to fabricate fast responsive SMP, which can be used in wide applications in various fields on aerospace engineering, biomedical devices, soft robots and electronic devices.





Sign in / Sign up

Export Citation Format

Share Document