scholarly journals Hyperoxia Inhibits Nitric Oxide Treatment Effects in Alveolar Epithelial Cells via Effects on L-Type Amino Acid Transporter-1

2014 ◽  
Vol 21 (13) ◽  
pp. 1823-1836 ◽  
Author(s):  
Mulugu V. Brahmajothi ◽  
Brian T. Tinch ◽  
Michael F. Wempe ◽  
Hitoshi Endou ◽  
Richard L. Auten
2007 ◽  
Vol 293 (1) ◽  
pp. L212-L221 ◽  
Author(s):  
Shilpa Vyas-Read ◽  
Philip W. Shaul ◽  
Ivan S. Yuhanna ◽  
Brigham C. Willis

Patients with interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF) and bronchopulmonary dysplasia (BPD), suffer from lung fibrosis secondary to myofibroblast-mediated excessive ECM deposition and destruction of lung architecture. Transforming growth factor (TGF)-β1 induces epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) to myofibroblasts both in vitro and in vivo. Inhaled nitric oxide (NO) attenuates ECM accumulation, enhances lung growth, and decreases alveolar myofibroblast number in experimental models. We therefore hypothesized that NO attenuates TGF-β1-induced EMT in cultured AEC. Studies of the capacity for endogenous NO production in AEC revealed that endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) are expressed and active in AEC. Total NOS activity was 1.3 pmol·mg protein−1·min−1 with 67% derived from eNOS. TGF-β1 (50 pM) suppressed eNOS expression by more than 60% and activity by 83% but did not affect iNOS expression or activity. Inhibition of endogenous NOS with l-NAME led to spontaneous EMT, manifested by increased α-smooth muscle actin (α-SMA) expression and a fibroblast-like morphology. Provision of exogenous NO to TGF-β1-treated AEC decreased stress fiber-associated α-SMA expression and decreased collagen I expression by 80%. NO-treated AEC also retained an epithelial morphology and expressed increased lamellar protein, E-cadherin, and pro-surfactant protein B compared with those treated with TGF-β alone. These findings indicate that NO serves a critical role in preserving an epithelial phenotype and in attenuating EMT in AEC. NO-mediated regulation of AEC fate may have important implications in the pathophysiology and treatment of diseases such as IPF and BPD.


1994 ◽  
Vol 301 (2) ◽  
pp. 313-316 ◽  
Author(s):  
K Schmidt ◽  
P Klatt ◽  
B Mayer

Uptake of the nitric oxide synthase inhibitors NG-methyl-L-arginine (L-NMA) and NG-nitro-L-arginine (L-NNA) by macrophages is mediated by two different mechanisms. Activation of the cells with cytokines resulted in an up-regulation of L-NMA uptake but did not affect L-NNA transport. Characterization of the transport sites revealed that uptake of L-NMA is mediated by a cationic amino acid transporter (system y+) whereas a neutral amino acid transporter (system L) accounts for the uptake of L-NNA.


PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e103411 ◽  
Author(s):  
Dagbjort H. Petursdottir ◽  
Olga D. Chuquimia ◽  
Raphaela Freidl ◽  
Carmen Fernández

2012 ◽  
Vol 27 (6) ◽  
pp. 570-578 ◽  
Author(s):  
Keisuke Oda ◽  
Ryoko Yumoto ◽  
Junya Nagai ◽  
Hirokazu Katayama ◽  
Mikihisa Takano

2008 ◽  
Vol 20 (1) ◽  
pp. 175
Author(s):  
S. L. Whitear ◽  
H. J. Leese

Oviduct fluid provides the environment for the gametes and early embryo but little is known about the mechanisms underlying its formation. Components of oviduct fluid have been shown to be present at concentrations different from that in blood, indicative of selective transport by the epithelial cells lining the lumen. For example, amino acid concentrations in oviduct fluid differ from those in extracellular fluid and have also been shown to be important to preimplantation embryos in vitro, enhancing development, especially when added at physiological concentrations. However, little is known about amino acid transport systems in the oviduct, and the aim of this work was to search for mRNA transcripts for amino acid transporters in bovine oviduct epithelial cells. Contra- and ipsi-lateral oviducts were removed from abattoir-derived reproductive tracts at specific stages of the reproductive cycle. Oviducts were trimmed of surrounding tissue and fat and slit longitudinally to expose the luminal surface. Bovine oviduct epithelial cells (bOEC) were scraped from the surface using a sterile glass coverslip and washed by centrifugation. mRNA was isolated using Trizol-chloroform extraction and lithium chloride precipitation methods. PCR was used to detect cDNA encoding the amino acid transporters CAT-1, CAT-4, and LAT1. A negative control (water) and a positive control (human placental cDNA) were included in each experiment and β-actin expression was used as a positive control for cDNA library generation. Products were separated by agarose gel electrophoresis. PCR for β-actin resulted in the presence of a positive band in all samples, showing successful extraction of mRNA and generation of cDNA libraries. mRNA for CAT-1 and LAT1 was detected in bOEC from contra- and ipsi-lateral oviducts and from each cycle stage tested. There was, however, no detectable mRNA for CAT-4 in any of the samples. To our knowledge, this is the first report of amino acid transporter expression in the mammalian oviduct. CAT-1 is a ubiquitous sodium-independent uniporter of cationic amino acids that has been localized to the basolateral membrane of epithelial cells. The presence of mRNA for this amino acid transporter in all samples tested is therefore to be expected. LAT1 is a obligatory exchanger which exports glutamine and cystine and imports large uncharged branched-chain amino acids. This transporter may be partly responsible for the high concentration of glutamate in the basal compartment of in vitro cell cultures reported in our previous work (Whitear and Leese 2007 Biennial Meet. Joint Fertil. Soc., York, UK). CAT-4 shares only 40% sequence homology with CAT-1 and its function is unknown. Its expression appears to be restricted to brain, testis, and placenta, and the absence of mRNA for the oviduct was, perhaps, not surprising. Further experiments will investigate expression levels of other amino acid transporters in bOEC and transporter localization using immunohistochemistry. This work was funded by the BBSRC and ANGLE Technology Ltd.


Sign in / Sign up

Export Citation Format

Share Document