scholarly journals The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration

2019 ◽  
Vol 30 (12) ◽  
pp. 1553-1598 ◽  
Author(s):  
Francesca De Santa ◽  
Laura Vitiello ◽  
Alessio Torcinaro ◽  
Elisabetta Ferraro
Author(s):  
Jian Shou ◽  
Xinjuan Shi ◽  
Xiaoguang Liu ◽  
Yingjie Chen ◽  
Peijie Chen ◽  
...  

AbstractImmune cells are involved in skeletal muscle regeneration. The mechanism by which Treg cells are involved in the regeneration of injured skeletal muscle is still unclear. The purpose of this study was to explore the role of programmed death-1 in contused skeletal muscle regeneration, and to clarify the regulation of programmed death-1 on Treg cell generation and macrophage polarization, in order to deepen our understanding of the relationship between the immune system and injured skeletal muscle regeneration. The results show that programmed death-1 knockdown reduced the number of Treg cells and impaired contused skeletal muscle regeneration compared with those of wild-type mice. The number of pro-inflammatory macrophages in the contused skeletal muscle of programmed death-1 knockout mice increased, and the expression of pro-inflammatory factors and oxidative stress factors increased, while the number of anti-inflammatory macrophages and the expression of anti-inflammatory factors, antioxidant stress factors, and muscle regeneration-related factors decreased. These results suggest that programmed death-1 can promote contused skeletal muscle regeneration by regulating Treg cell generation and macrophage polarization.


1996 ◽  
Vol 21 (4) ◽  
pp. 236-250 ◽  
Author(s):  
Jamie MacGregor ◽  
Wade S. Parkhouse

The role of the insulin-like growth factors I and II (IGF-I and IGF-II), previously known as the somatomedins, in general growth and development of various tissues has been known for many years. Thought of exclusively as endocrine factors produced by the liver, and under the control of growth hormone, the somatomedins were known as the intermediaries by which growth hormone exerted its cellular effects during tissue growth and maturation. Eventually it was discovered that virtually every tissue type is capable of autocrine production of the IGFs, and their involvement in skeletal muscle tissue repair and regeneration became apparent. Recent advances in technology have allowed the characterisation of many of the different growth factors believed to play a role in muscle regeneration, and experimental manipulations of cells in culture have provided insight into the effects of the various growth factors on the myoblast. This paper explores the potential role of the IGFs in skeletal muscle regeneration. A critical role of IGF-II in terminal differentiation of proliferating muscle precurser cells following injury is proposed. Key words: growth factors, myogenesis, skeletal muscle regeneration


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1963
Author(s):  
Francesca Corsi ◽  
Felicia Carotenuto ◽  
Paolo Di Nardo ◽  
Laura Teodori

Modulation of macrophage plasticity is emerging as a successful strategy in tissue engineering (TE) to control the immune response elicited by the implanted material. Indeed, one major determinant of success in regenerating tissues and organs is to achieve the correct balance between immune pro-inflammatory and pro-resolution players. In recent years, nanoparticle-mediated macrophage polarization towards the pro- or anti-inflammatory subtypes is gaining increasing interest in the biomedical field. In TE, despite significant progress in the use of nanomaterials, the full potential of nanoparticles as effective immunomodulators has not yet been completely realized. This work discusses the contribution that nanotechnology gives to TE applications, helping native or synthetic scaffolds to direct macrophage polarization; here, three bioactive metallic and ceramic nanoparticles (gold, titanium oxide, and cerium oxide nanoparticles) are proposed as potential valuable tools to trigger skeletal muscle regeneration.


2017 ◽  
Vol 41 (7) ◽  
pp. 706-715 ◽  
Author(s):  
Kamila Delaney ◽  
Paulina Kasprzycka ◽  
Maria Anna Ciemerych ◽  
Malgorzata Zimowska

2021 ◽  
pp. 1-23
Author(s):  
Theret Marine ◽  
Saclier Marielle ◽  
Messina Graziella ◽  
Rossi M.V. Fabio

While skeletal muscle remodeling happens throughout life, diseases that result in its dysfunction are accountable for many deaths. Indeed, skeletal muscle is exceptionally capable to respond to stimuli modifying its homeostasis, such as in atrophy, hypertrophy, regeneration and repair. In particular conditions such as genetic diseases (muscular dystrophies), skeletal muscle’s capacity to remodel is strongly affected and undergoes continuous cycles of chronic damage. This induces scarring, fatty infiltration, as well as loss of contractibility and of the ability to generate force. In this context, inflammation, primarily mediated by macrophages, plays a central pathogenic role. Macrophages contribute as the primary regulators of inflammation during skeletal muscle regeneration, affecting tissue-resident cells such as myogenic cells and endothelial cells, but also fibro-adipogenic progenitors, which are the main source of the fibro fatty scar. During skeletal muscle regeneration their function is tightly orchestrated, while in dystrophies their fate is strongly disturbed, resulting in chronic inflammation. In this review, we will discuss the latest findings on the role of macrophages in skeletal muscle diseases, and how they are regulated.


1993 ◽  
Vol 207 (2) ◽  
pp. 321-331 ◽  
Author(s):  
T.A. Robertson ◽  
M.A.L. Maley ◽  
M.D. Grounds ◽  
J.M. Papadimitriou

2013 ◽  
Vol 22 (16) ◽  
pp. 2298-2314 ◽  
Author(s):  
Alexander Birbrair ◽  
Tan Zhang ◽  
Zhong-Min Wang ◽  
Maria Laura Messi ◽  
Grigori N. Enikolopov ◽  
...  

Immunobiology ◽  
2012 ◽  
Vol 217 (11) ◽  
pp. 1130
Author(s):  
Lea Munthe-Fog ◽  
P. Schjerling ◽  
Mikkel-Ole Skjoedt ◽  
T. Krag ◽  
H.O. Madsen ◽  
...  

1997 ◽  
Vol 20 (7) ◽  
pp. 815-822 ◽  
Author(s):  
John B. Kurek ◽  
John J. Bower ◽  
Margarita Romanella ◽  
Frank Koentgen ◽  
Mark Murphy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document