Enteric Neural Stem Cells Expressing Insulin-Like Growth Factor 1: A Novel Cellular Therapy for Hirschsprung's Disease in Mouse Model

2018 ◽  
Vol 37 (7) ◽  
pp. 642-648 ◽  
Author(s):  
Wei Liu ◽  
Lijuan Zhang ◽  
Rongde Wu
2016 ◽  
Vol 5 (3) ◽  
pp. 379-391 ◽  
Author(s):  
Lisa M. McGinley ◽  
Erika Sims ◽  
J. Simon Lunn ◽  
Osama N. Kashlan ◽  
Kevin S. Chen ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1674-1674
Author(s):  
Sheng Zhou ◽  
Soghra Fatima ◽  
Brian P. Sorrentino

Abstract Neural stem cells have been identified in both the cerebellum and forebrain of fetal and adult mice. These cells can form neurospheres in culture and differentiate into both glia and neurons either in vitro or in vivo. In embryonic day 14 forebrain, neural stem cells are found to exist exclusively in a subpopulation with the Side Population (SP) phenotype, and express Abcg2, a member of the ABC transporter family that is responsible for the SP phenotype in hematopoietic stem cells (HSCs). The expression of Abcg2 in stem cells in the cerebellum has not been characterized. We have generated an Abcg2/GFP knock-in mouse model in which expression of GFP is under control of the endogenous Abcg2 locus and used this model to demonstrate that Abcg2 expression can be used for HSC enrichment. Here we report the use of this mouse model to explore the relationship between Abcg2 expression and neural stem cell function in neonatal cerebellum. Single cells were prepared from cerebellum of 4–9 day old mice by digesting with papain. We then stained the cells with anti-CD45 and anti-Ter119 antibody to exclude the resident hematopoietic cells in subsequent flow cytometry analysis and cell sorting. We found that a small but consistent subpopulation of cells, comprising 0.7±0.12% of total CD45−Ter119- single cell preparations, expressed the Abcg2/GFP allele. To determine whether these GFP+ cells were enriched for neural stem cells, we sorted the CD45−Ter119- cells into GFP+ and GFP− subpopulations and analyzed for their neurosphere forming activity in the presence of epidermal growth factor and basic fibroblast growth factor. We found that the GFP+ subpopulation formed 21 fold more neurospheres compared with the GFP− subpopulation. These neurosphere forming cells can self-renew as evidenced by their capacity to form secondary neurospheres when replated. These results demonstrate that similar to what is seen with HSCs and with embryonic forebrain cells, Abcg2 is expressed in the neural stem cells in neonatal cerebellum, and Abcg2/GFP expression in this mouse model could also be used as a marker to prospectively purify neural stem cells from cerebellum. Ongoing studies are focused on defining the in vivo multilineage differentiation potential of the Abcg2/GFP+ cells and determining whether Abcg2 expression could be used as a marker for purification of medulloblastoma stem cells.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii231-ii232
Author(s):  
Katharine Halligan ◽  
Ann-Catherine Stanton ◽  
Matthew Halbert ◽  
Brian Golbourn ◽  
Stephen Mack ◽  
...  

Abstract Pediatric glioblastoma (pGBM) are incurable brain tumors with overall poor prognosis and response to treatments due to molecular and epigenetic heterogeneity. In particular, the MYCN subtype of pGBM are a highly aggressive form of GBM with a dismal median survival of only 14 months. Furthermore, this subtype is enriched with loss of the tumor suppressor genes TP53 and PTEN, leading to aberrantly active PI3K-AKT signaling pathway and DNA-checkpoint abnormalities. Here, we report the generation of a novel syngeneic mouse model that recapitulates the features of the MYCN subtype of pGBM. We isolated Sox2-Cre neural stem cells from C57BL/6 mice and transduced inverted retroviral-cassettes of the murine Mycn oncogene simultaneously with shRNA targeting tumor suppressor genes p53 and Pten. Retroviral-cassettes are flanked by tandem LoxP sites arranged so that Cre recombinase expression inverts the cassettes in frame allowing for MYCN protein expression and loss of the P53/PTEN proteins. Transgene activation is accompanied with selectable cell surface markers and fluorescent tags enabling for fluorescent activated cell sorting (FACS) of the desired cell populations. Neural stem cells with MYCN protein expression and concurrent silencing of P53 and PTEN protein (NPP cells) result in significantly increased proliferation and activation of PI3K-AKT pathway as compared to control neural stem cells and have. Injection of NPP cells into the forebrain of immune competent C57BL/6 mice result in the formation of invasive high-grade gliomas with a lethal phenotype at ~50 days post injection. Using several next generation brain penetrant small molecule inhibitors of the PI3K-AKT pathway, we show inhibition of tumorigenesis in vitro. Moreover, we have identified several novel mechanisms of PI3KAKT treatment resistance and are currently identifying therapies that may overcome this resistance through RNA seq analysis. In summary, well defined genetic drivers of GBM can lead to informed mouse model generation to test promising therapies.


Stem Cells ◽  
2016 ◽  
Vol 34 (8) ◽  
pp. 2194-2209 ◽  
Author(s):  
Vanesa Nieto-Estévez ◽  
Carlos O. Oueslati-Morales ◽  
Lingling Li ◽  
James Pickel ◽  
Aixa V. Morales ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document