Evaluation of the Metallurgical Dust Sorbent Efficacy in Reactive Blue 19 Dye Removal from Aqueous Solutions and Textile Wastewater

2020 ◽  
Vol 37 (7) ◽  
pp. 509-518
Author(s):  
Magdalena Pająk ◽  
Agnieszka Dzieniszewska
2018 ◽  
Vol 5 (4) ◽  
pp. 197-203 ◽  
Author(s):  
Sepideh Sadeghi ◽  
Ghazal Raki ◽  
Asrin Amini ◽  
Nezamaddin Mengelizadeh ◽  
Mohammad Mehdi Amin ◽  
...  

Background: Dye and colored materials cause health risks in water and therefore, must be removed from water supplies and wastewater. The aim of this study was to evaluate the effectiveness of the third generation poly(amidoamine) (PAMAM) and poly (propylene imine) dendrimers (PPI-G3) in the removal of reactive blue 19 (RB19) dye from aqueous solutions and determine the optimum conditions for the removal. Methods: This study was performed in a laboratory and batch scale. In this study, synthetic wastewater was examined with three different concentrations of RB19 (25, 50, and 100 mg/L), different pHs (3, 7, and 10), various amounts of dendrimer (0.4, 0.8, 1.2, and 1.6 g/L), and at different times (15, 30, and 60 minutes) during the adsorption process. The remaining amount of dye was measured by spectrophotometer at 592 nm wavelength. Langmuir and Freundlich isotherms were also tested. Results: The results showed that by increasing the reaction time and adsorbent dosage, the rate of dye removal increased while by increasing the initial dye concentration and pH, the dye removal efficiency was significantly decreased. In this study, with increase of pH from 3 to 10, dye removal efficiency at a concentration of 25 mg/L, decreased from 72% to 20% and 88% to 17% by PAMAM and PPI dendrimers, respectively. Excel software was used for data analysis. Conclusion: Both adsorbents had a good dye removal efficiency, but PPI dendrimer was more effective in removing RB19. Adsorption data followed the Langmuir isotherm.


2021 ◽  
Vol 19 (6) ◽  
pp. 41-47
Author(s):  
Ahmed Qasim Ubaid ◽  
Nadia Mohammed Majeed ◽  
Ahmed Mohammed Ali Savore ◽  
Mohammed Jawad Salih Al-Haidarey

Adsorption is one of the promising strategies for aqueous dye remediation. A lot of attention has been paid to textile wastewater treatment using smart materials. In this study, we formed the N-FeO to test its properties by using FTIR and TEM technique. We also tested AC, N-FeO and mixed N-FeO/AC to investigate the adsorption efficiency of lipophilic cationic dye (LCD) removal from aqueous solutions of each individually under. The results showed that the removal percentage of lipophilic cationic dye by using activated crbon was increasing significantly with AC wight (Pvalue < 0.01), and the highst removal was to 0.1 ppm of dye (52%). While the lowest dye removal percentage was 14.3% of 1ppm dye concentration and 0.05g AC. The rmoval of dye, by using N-FeO, was depant on the concentration of dye and the amount of N-FeO. The highst percentage of dye removal was 45% ±3.69 of 0.1 ppm concentration with using 0.3g and 0.35 g of N-FeO. While the lowest removal percentage of dye was 7.3%±2.49 of 1ppm with using 0.05g of N-FeO. The using of N-FeO/AC mixture leads to a significant removal percentage of dye in different concentrations compared with using each of them a lone. By this mixture, the highest removal of dye reached to 98%±3.47, 92%±3.96, and 88%±1.44 of 0.1ppm, 0.5ppm, and 1ppm respectively by using 0.35g of N-FeO/AC mixture. While the lowest dye removal percentage was 54%±1.1, 46%±0.98, and 40%±2.49 of 0.1ppm, 0.5ppm, and 1ppm respectively by using 0.05g of N-FeO/AC mixture. This study suggested that the increase in adsorption at low dye concentration was due to the availability of active sites that were saturated While the adsorbing surface area will increase with the N-FeO/AC mixture, the percentage of dye removal at constant temperature will also increase, and it is nessesary to using more chemometric test of this mixture for testing the best removal environment of this kind of dye.


2020 ◽  
Vol 9 (1) ◽  
pp. 770-782
Author(s):  
Tianpeng Li ◽  
Jing Fan ◽  
Tingting Sun

AbstractA novel porous ceramsite was made of municipal sludge, coal fly ash, and river sediment by sintering process, and the performance of batch and fixed-bed column systems containing this material in the removal of acid red G (ARG) dye from aqueous solutions was assessed in this study. The results of orthogonal test showed that sintering temperature was the most important determinant in the preparation of porous ceramsite, and it possesses developed pore structure and high specific surface area. Batch experiment results indicated that the adsorption process of ARG dye toward porous ceramsite was a spontaneous exothermic reaction, which could be better described with Freundlich–Langmuir isotherm model (R2 > 0.992) and basically followed the pseudo-first-order kinetic equation (R2 > 0.993). Column experiment results showed that when the porous ceramsite was used as packing material, its adsorption capacity was roughly improved by 3.5 times compared with that in batch system, and the breakthrough behavior was simulated well with Yoon–Nelson model, with R2 > 0.954. This study suggested that the novelty man-made porous ceramsite obtained from solid wastes might be processed as a certain cost-effective treatment material fit for the dye removal in aqueous solutions.


Heliyon ◽  
2021 ◽  
pp. e07191
Author(s):  
Fateme Barjasteh-Askari ◽  
Mojtaba Davoudi ◽  
Maryam Dolatabadi ◽  
Saeid Ahmadzadeh

Author(s):  
Karine Cappuccio de Castro ◽  
Vitória Fernandes Cintra Leme ◽  
Flavia Helena Moreti Souza ◽  
Giovanna Oliveira Barros Costa ◽  
Gabriela Espirito Santos ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (52) ◽  
pp. 27354-27362 ◽  
Author(s):  
Simona Gabriela Muntean ◽  
Maria Elena Rădulescu-Grad ◽  
Paula Sfârloagă

The efficiency of styrene-divinylbenzene functionalized with trimethylamonium groups as sorbent for the direct dye removal from aqueous solutions was investigated.


2018 ◽  
Vol 15 (1) ◽  
pp. 26 ◽  
Author(s):  
O.A.A. Eletta ◽  
S.I. Mustapha ◽  
O.A. Ajayi ◽  
A.T. Ahmed

Sign in / Sign up

Export Citation Format

Share Document