Anodic Oxidation of Effluents from Stages of MBR-UF Municipal Landfill Leachate Treatment Plant

2020 ◽  
Vol 37 (10) ◽  
pp. 702-714
Author(s):  
Zubeda Ukundimana ◽  
Mehmet Kobya ◽  
Philip Isaac Omwene ◽  
Erhan Gengec ◽  
Orhan Taner Can
2015 ◽  
Vol 72 (5) ◽  
pp. 770-778 ◽  
Author(s):  
Samunya Sanguanpak ◽  
Chart Chiemchaisri ◽  
Wilai Chiemchaisri ◽  
Kazuo Yamamoto

This research investigated the membrane fouling and micro-pollutant removals in treatment of municipal landfill leachate at various pH levels (i.e. 5.5, 6.5, 7.5, and 8.5) using membrane bioreactors. The findings revealed that membrane fouling was influenced by the pH level of mixed liquor, with pH 5.5 exhibiting the most severe membrane fouling. At pH 5.5, proteins and carbohydrates were predominant in the membrane foulants, while at pH 8.5 humic-like and inorganic substances constituted the largest proportion of the foulants on the membrane surface. The removal efficiencies of micro-pollutants (bisphenol-A; 2,6-di-tert-butylphenol and 2,6-di-tert-butyl-4-methylbutylphenol) were nevertheless insignificantly influenced by the pH levels of mixed liquor. In addition, the removal rates of the compounds at pH 5.5 were slightly lower vis-à-vis at the higher pH levels. The micro-pollutant retention on the fouled membranes was also significant and highest under the mixed liquor pH of 8.5. Furthermore, the experiments demonstrated that the varying degrees of rejection by the fouled membranes could be attributed to the alteration of foulant characteristics as a result of the pH variations.


2006 ◽  
Vol 6 (6) ◽  
pp. 147-154 ◽  
Author(s):  
K.J. An ◽  
J.W. Tan ◽  
L. Meng

An advanced nitrogen removal pilot study was performed in China's Xia Ping Landfill Leachate Treatment Plant to undertake shortcut nitrification and denitrification with the Membrane Bio-reactor (MBR) process. It was found that the MBR process used 25% less of the oxygen and 40% less of the external carbon sources, compared to the conventional nitrification and denitrification process. The key feature of the MBR process is that it provides an environment more favorable for ammonia oxidation bacterium (AOB) than for nitrite oxidation bacterium (NOB) through controlling loading, pH, temperature, dissolved oxygen concentration (DO), and NH3 inhibition. Optimum operating condition was examined through continuous running of the pilot MBR, and it was found that a minimum HRT of 4.3 days and maximum ammonia loading of 0.6 kg N- NH4+ m3.d with pH 7–8.5, temperature 25–30 °C, and DO at 2 mg/L is favorable to AOB. Kinetic study was conducted to identify the characteristic of the microorganisms in the system. Measured Ks and μA,max of MBR sludge was 19.65 mg NH4-N/L (Temperature 25 °C, pH 8.5) and 0.26 d−1, respectively.


2017 ◽  
Vol 24 (11) ◽  
pp. 10364-10372 ◽  
Author(s):  
Gulizar Kurtoglu Akkaya ◽  
Elif Sekman ◽  
Selin Top ◽  
Ece Sagir ◽  
Mehmet Sinan Bilgili ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document