The Need for a Tiered Registry for US Gene Drive Governance

2022 ◽  
Author(s):  
Kelsey Lane Warmbrod ◽  
Amanda L. Kobokovich ◽  
Rachel West ◽  
Gigi Kwik Gronvall ◽  
Michael Montague
Keyword(s):  
Author(s):  
Daniel L. Hartl

A Primer of Population Genetics and Genomics, 4th edition, has been completely revised and updated to provide a concise but comprehensive introduction to the basic concepts of population genetics and genomics. Recent textbooks have tended to focus on such specialized topics as the coalescent, molecular evolution, human population genetics, or genomics. This primer bucks that trend by encouraging a broader familiarity with, and understanding of, population genetics and genomics as a whole. The overview ranges from mating systems through the causes of evolution, molecular population genetics, and the genomics of complex traits. Interwoven are discussions of ancient DNA, gene drive, landscape genetics, identifying risk factors for complex diseases, the genomics of adaptation and speciation, and other active areas of research. The principles are illuminated by numerous examples from a wide variety of animals, plants, microbes, and human populations. The approach also emphasizes learning by doing, which in this case means solving numerical or conceptual problems. The rationale behind this is that the use of concepts in problem-solving lead to deeper understanding and longer knowledge retention. This accessible, introductory textbook is aimed principally at students of various levels and abilities (from senior undergraduate to postgraduate) as well as practising scientists in the fields of population genetics, ecology, evolutionary biology, computational biology, bioinformatics, biostatistics, physics, and mathematics.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
N. de Graeff ◽  
Karin R. Jongsma ◽  
Annelien L. Bredenoord

Abstract Background Gene drive technologies (GDTs) promote the rapid spread of a particular genetic element within a population of non-human organisms. Potential applications of GDTs include the control of insect vectors, invasive species and agricultural pests. Whether, and if so, under what conditions, GDTs should be deployed is hotly debated. Although broad stances in this debate have been described, the convictions that inform the moral views of the experts shaping these technologies and related policies have not been examined in depth in the academic literature. Methods In this qualitative study, we interviewed GDT experts (n = 33) from different disciplines to identify and better understand their moral views regarding these technologies. The pseudonymized transcripts were analyzed thematically. Results The respondents’ moral views were principally influenced by their attitudes towards (1) the uncertainty related to GDTs; (2) the alternatives to which they should be compared; and (3) the role humans should have in nature. Respondents agreed there is epistemic uncertainty related to GDTs, identified similar knowledge gaps, and stressed the importance of realistic expectations in discussions on GDTs. They disagreed about whether uncertainty provides a rationale to refrain from field trials (‘risks of intervention’ stance) or to proceed with phased testing to obtain more knowledge given the harms of the status quo (‘risks of non-intervention’ stance). With regards to alternatives to tackle vector-borne diseases, invasive species and agricultural pests, respondents disagreed about which alternatives should be considered (un)feasible and (in)sufficiently explored: conventional strategies (‘downstream solutions’ stance) or systematic changes to health care, political and agricultural systems (‘upstream solutions’ stance). Finally, respondents held different views on nature and whether the use of GDTs is compatible with humans’ role in nature (‘interference’ stance) or not (‘non-interference stance’). Conclusions This interview study helps to disentangle the debate on GDTs by providing a better understanding of the moral views of GDT experts. The obtained insights provide valuable stepping-stones for a constructive debate about underlying value conflicts and call attention to topics that deserve further (normative) reflection. Further evaluation of these issues can facilitate the debate on and responsible development of GDTs.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 97
Author(s):  
Nace Kranjc ◽  
Andrea Crisanti ◽  
Tony Nolan ◽  
Federica Bernardini

The increase in molecular tools for the genetic engineering of insect pests and disease vectors, such as Anopheles mosquitoes that transmit malaria, has led to an unprecedented investigation of the genomic landscape of these organisms. The understanding of genome variability in wild mosquito populations is of primary importance for vector control strategies. This is particularly the case for gene drive systems, which look to introduce genetic traits into a population by targeting specific genomic regions. Gene drive targets with functional or structural constraints are highly desirable as they are less likely to tolerate mutations that prevent targeting by the gene drive and consequent failure of the technology. In this study we describe a bioinformatic pipeline that allows the analysis of whole genome data for the identification of highly conserved regions that can point at potential functional or structural constraints. The analysis was conducted across the genomes of 22 insect species separated by more than hundred million years of evolution and includes the observed genomic variation within field caught samples of Anopheles gambiae and Anopheles coluzzii, the two most dominant malaria vectors. This study offers insight into the level of conservation at a genome-wide scale as well as at per base-pair resolution. The results of this analysis are gathered in a data storage system that allows for flexible extraction and bioinformatic manipulation. Furthermore, it represents a valuable resource that could provide insight into population structure and dynamics of the species in the complex and benefit the development and implementation of genetic strategies to tackle malaria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicky R. Faber ◽  
Gus R. McFarlane ◽  
R. Chris Gaynor ◽  
Ivan Pocrnic ◽  
C. Bruce A. Whitelaw ◽  
...  

AbstractInvasive species are among the major driving forces behind biodiversity loss. Gene drive technology may offer a humane, efficient and cost-effective method of control. For safe and effective deployment it is vital that a gene drive is both self-limiting and can overcome evolutionary resistance. We present HD-ClvR in this modelling study, a novel combination of CRISPR-based gene drives that eliminates resistance and localises spread. As a case study, we model HD-ClvR in the grey squirrel (Sciurus carolinensis), which is an invasive pest in the UK and responsible for both biodiversity and economic losses. HD-ClvR combats resistance allele formation by combining a homing gene drive with a cleave-and-rescue gene drive. The inclusion of a self-limiting daisyfield gene drive allows for controllable localisation based on animal supplementation. We use both randomly mating and spatial models to simulate this strategy. Our findings show that HD-ClvR could effectively control a targeted grey squirrel population, with little risk to other populations. HD-ClvR offers an efficient, self-limiting and controllable gene drive for managing invasive pests.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Sarah Hartley ◽  
Robert D. J. Smith ◽  
Adam Kokotovich ◽  
Chris Opesen ◽  
Tibebu Habtewold ◽  
...  

Abstract Background The African Union’s High-Level Panel on Emerging Technologies identified gene drive mosquitoes as a priority technology for malaria elimination. The first field trials are expected in 5–10 years in Uganda, Mali or Burkina Faso. In preparation, regional and international actors are developing risk governance guidelines which will delineate the framework for identifying and evaluating risks. Scientists and bioethicists have called for African stakeholder involvement in these developments, arguing the knowledge and perspectives of those people living in malaria-afflicted countries is currently missing. However, few African stakeholders have been involved to date, leaving a knowledge gap about the local social-cultural as well as ecological context in which gene drive mosquitoes will be tested and deployed. This study investigates and analyses Ugandan stakeholders’ hopes and concerns about gene drive mosquitoes for malaria control and explores the new directions needed for risk governance. Methods This qualitative study draws on 19 in-depth semi-structured interviews with Ugandan stakeholders in 2019. It explores their hopes for the technology and the risks they believed pertinent. Coding began at a workshop and continued through thematic analysis. Results Participants’ hopes and concerns for gene drive mosquitoes to address malaria fell into three themes: (1) ability of gene drive mosquitoes to prevent malaria infection; (2) impacts of gene drive testing and deployment; and, (3) governance. Stakeholder hopes fell almost exclusively into the first theme while concerns were spread across all three. The study demonstrates that local stakeholders are able and willing to contribute relevant and important knowledge to the development of risk frameworks. Conclusions International processes can provide high-level guidelines, but risk decision-making must be grounded in the local context if it is to be robust, meaningful and legitimate. Decisions about whether or not to release gene drive mosquitoes as part of a malaria control programme will need to consider the assessment of both the risks and the benefits of gene drive mosquitoes within a particular social, political, ecological, and technological context. Just as with risks, benefits—and importantly, the conditions that are necessary to realize them—must be identified and debated in Uganda and its neighbouring countries.


Science ◽  
2017 ◽  
Vol 358 (6367) ◽  
pp. 1135-1136 ◽  
Author(s):  
Claudia Emerson ◽  
Stephanie James ◽  
Katherine Littler ◽  
Filippo (Fil) Randazzo
Keyword(s):  

2021 ◽  
Vol 19 (2) ◽  
pp. 131-132
Author(s):  
Lane Warmbrod ◽  
Amanda Kobokovich ◽  
Rachel West ◽  
Gigi Kwik Gronvall ◽  
Michael Montague
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document