Characterization of Plasma Magnesium Concentration and Oxidative Stress Following Graded Traumatic Brain Injury in Humans

2000 ◽  
Vol 17 (1) ◽  
pp. 53-68 ◽  
Author(s):  
IBOLJA CERNAK ◽  
VELJKO J. SAVIC ◽  
JELENA KOTUR ◽  
VERA PROKIC ◽  
MILIC VELJOVIC ◽  
...  
2009 ◽  
Vol 1291 ◽  
pp. 122-132 ◽  
Author(s):  
Shadi Homsi ◽  
Fabiola Federico ◽  
Nicole Croci ◽  
Bruno Palmier ◽  
Michel Plotkine ◽  
...  

2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Ligang Wang ◽  
Libo Wang ◽  
Zhibo Dai ◽  
Pei Wu ◽  
Huaizhang Shi ◽  
...  

Oxidative stress has been strongly implicated in the pathogenesis of traumatic brain injury (TBI). Mitochondrial ferritin (Ftmt) is reported to be closely related to oxidative stress. However, whether Ftmt is involved in TBI-induced oxidative stress and neurological deficits remains unknown. In the present study, the controlled cortical impact model was established in wild-type and Ftmt knockout mice as a TBI model. The Ftmt expression, oxidative stress, neurological deficits, and brain injury were measured. We found that Ftmt expression was gradually decreased from 3 to 14 days post-TBI, while oxidative stress was gradually increased, as evidenced by reduced GSH and superoxide dismutase levels and elevated malondialdehyde and nitric oxide levels. Interestingly, the extent of reduced Ftmt expression in the brain was linearly correlated with oxidative stress. Knockout of Ftmt significantly exacerbated TBI-induced oxidative stress, intracerebral hemorrhage, brain infarction, edema, neurological severity score, memory impairment, and neurological deficits. However, all these effects in Ftmt knockout mice were markedly mitigated by pharmacological inhibition of oxidative stress using an antioxidant, N-acetylcysteine. Taken together, these results reveal an important correlation between Ftmt and oxidative stress after TBI. Ftmt deficiency aggravates TBI-induced brain injuries and neurological deficits, which at least partially through increasing oxidative stress levels. Our data suggest that Ftmt may be a promising molecular target for the treatment of TBI.


2013 ◽  
Vol 30 (14) ◽  
pp. 1278-1287 ◽  
Author(s):  
Luiz Fernando Almeida Silva ◽  
Maurício Scopel Hoffmann ◽  
Rogério da Rosa Gerbatin ◽  
Fernando da Silva Fiorin ◽  
Fernando Dobrachinski ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 38-42 ◽  
Author(s):  
Shiping Li ◽  
Qiaoying Zhang ◽  
Peiwu Li

Abstract Background This study evaluated the protective effects of epifriedelinol (EFD) in a rat model of traumatic brain injury (TBI). Methodology TBI was induced by dropping a weight from a specific height. The animals were separated into control, TBI, and EFD 100 and 200 mg/kg groups. The latter received 100 and 200 mg/kg EFD, respectively, for 2 days beginning 30 min after inducing TBI. The neurological examination score, permeability of the blood–brain barrier (BBB), water content of the brain, cytokine levels, and oxidative stress parameters were measured in the rats. The effects of EFD on glial fibrillary acidic protein (GFAP)-positive cells were evaluated using immunohistochemistry. ResultThe EFD treatment significantly decreased the neurological score, permeability of the BBB, and water content of brain compared with the TBI group. The levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and oxidative stress were significantly decreased in the EFD-treated groups. The number of GFAP-positive cells was also significantly reduced in the EFD-treated groups. ConclusionEFD attenuates the secondary injury in TBI rats by reducing the serum cytokine levels and oxidative stress.


2010 ◽  
Vol 27 (10) ◽  
pp. 1883-1893 ◽  
Author(s):  
Marcelo L. Schwarzbold ◽  
Daniel Rial ◽  
Tatiana De Bem ◽  
Daniele G. Machado ◽  
Mauricio P. Cunha ◽  
...  

2021 ◽  
Vol 39 (1) ◽  
pp. 73-84
Author(s):  
Jianqiang Song ◽  
Guoliang Du ◽  
Haiyun Wu ◽  
Xiangliang Gao ◽  
Zhen Yang ◽  
...  

Background: Traumatic brain injury (TBI) has been a serious public health issue. Clinically, there is an urgent need for agents to ameliorate the neuroinflammation and oxidative stress induced by TBI. Our previous research has demonstrated that quercetin could protect the neurological function. However, the detailed mechanism underlying this process remains poorly understood. Objective: This research was designed to investigate the mechanisms of quercetin to protect the cortical neurons. Methods: A modified weight-drop device was used for the TBI model. 5, 20 or 50 mg/kg quercetin was injected intraperitoneally to rats at 0.5, 12 and 24 h post TBI. Rats were sacrificed three days post injury and their cerebral cortex was obtained from the injured side. The rats were randomly assigned into three groups of equal number: TBI and quercetin group, TBI group, and Sham group. The brain water content was calculated to estimate the brain damage induced by TBI. Immunohistochemical and Western blot assays were utilized to investigate the neurobehavioral status. Enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction were performed to evaluate the inflammatory responses. The cortical oxidative stress was measured by estimating the activities of malondialdehyde, superoxide dismutase, catalase and glutathione-Px. Western blot was utilized to evaluate the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1). Results: Quercetin attenuated the brain edema and microgliosis in TBI rats. Quercetin treatment attenuated cortical inflammatory responses and oxidative stress induced by TBI insults. Quercetin treatment activated the cortical Nrf2/HO-1 pathway in TBI rats. Conclusions: Quercetin ameliorated the TBI-induced neuroinflammation and oxidative stress in the cortex through activating the Nrf2/HO-1 pathway.


Sign in / Sign up

Export Citation Format

Share Document