scholarly journals Synergistic CRISPRa-Regulated Chondrogenic Extracellular Matrix Deposition Without Exogenous Growth Factors

2020 ◽  
Vol 26 (21-22) ◽  
pp. 1169-1179 ◽  
Author(s):  
Niloofar Farhang ◽  
Bryton Davis ◽  
Jacob Weston ◽  
Matthew Ginley-Hidinger ◽  
Jason Gertz ◽  
...  
2016 ◽  
Vol 242 (4) ◽  
pp. 374-383 ◽  
Author(s):  
Renu Agarwal ◽  
Puneet Agarwal

Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.


2016 ◽  
Vol 4 ◽  
pp. 1-12 ◽  
Author(s):  
Zhensen Zhu ◽  
Jie Ding ◽  
Edward E. Tredget

Abstract Hypertrophic scars (HTS) are caused by dermal injuries such as trauma and burns to the deep dermis, which are red, raised, itchy and painful. They can cause cosmetic disfigurement or contractures if craniofacial areas or mobile region of the skin are affected. Abnormal wound healing with more extracellular matrix deposition than degradation will result in HTS formation. This review will introduce the physiology of wound healing, dermal HTS formation, treatment and difference with keloids in the skin, and it also review the current advance of molecular basis of HTS including the involvement of cytokines, growth factors, and macrophages via chemokine pathway, to bring insights for future prevention and treatment of HTS.


2009 ◽  
Vol 81 (3) ◽  
pp. 623-629 ◽  
Author(s):  
Lydia M. Ferreira ◽  
Alfredo Gragnani ◽  
Fabianne Furtado ◽  
Bernardo Hochman

There comes a time when the understanding of the cutaneous healing process becomes essential due to the need for a precocious tissue repair to reduce the physical, social, and psychological morbidity. Advances in the knowledge on the control of interaction among cells, matrix and growth factors will provide more information on the Regenerative Medicine, an emerging area of research in medical bioengineering. However, considering the dynamism and complexity of the cutaneous healing response, it is fundamental to understand the control mechanism exerted by the interaction and synergism of both systems, cutaneous nervous and central nervous, via hypothalamus hypophysis-adrenal axis, a relevant subject, but hardly ever explored. The present study reviews the neuro-immune-endocrine physiology of the skin responsible for its multiple functions and the extreme disturbances of the healing process, like the excess and deficiency of the extracellular matrix deposition.


2021 ◽  
Author(s):  
Hao Li ◽  
Mengna Li ◽  
Pei Liu ◽  
Kai-Yang Wang ◽  
Haoyu Fang ◽  
...  

Due to the native skin limitations and the complexity of reconstructive microsurgery, advanced biomaterials are urgently required to promote wound healing for severe skin defects caused by accidents and disasters....


2021 ◽  
Vol 19 (4) ◽  
pp. 501-507
Author(s):  
Yunhe Gu ◽  
Peiyao Guo ◽  
Guangbiao Xu

Transforming growth factor-β1 promotes excessive extracellular matrix deposition and epithelial-mesenchymal transition of tubular epithelial cells, thus stimulating the progression of renal fibrosis. Carvacrol has been shown to alleviate cardiac and liver fibrosis and attenuate renal injury. However, the role of carvacrol on renal fibrosis has not been examined. First, measurements using Cell Counting Kit-8 showed that carvacrol reduced cell viability of tubular epithelial cell line HK-2 in a dose-dependent fashion. Second, transforming growth factor-β1 induced excessive extracellular matrix deposition in HK-2 cells with enhanced collagen I, collagen IV, and fibronectin expression. However, carvacrol decreased the expression of collagen I, collagen IV in a dose-dependent manner and fibronectin to attenuate the extracellular matrix deposition in HK-2. Third, carvacrol attenuated TGF-β1-induced decrease of E-cadherin and increase of snail, vimentin, and alpha-smooth muscle actin in HK-2 cells. Transforming growth factor-β1-induced increase in PI3K and AKT phosphorylation in HK-2 were also reversed by carvacrol. Collectively, carvacrol ameliorates renal fibrosis through inhibition of transforming growth factor-β1-induced extracellular matrix deposition and epithelial-mesenchymal transition of HK-2 cells, providing potential therapy for the treatment of renal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document