scholarly journals Asymptotic Counting in Conformal Dynamical Systems

2021 ◽  
Vol 271 (1327) ◽  
Author(s):  
Mark Pollicott ◽  
Mariusz Urbanski

In this monograph we consider the general setting of conformal graph directed Markov systems modeled by countable state symbolic subshifts of finite type. We deal with two classes of such systems: attracting and parabolic. The latter being treated by means of the former. We prove fairly complete asymptotic counting results for multipliers and diameters associated with preimages or periodic orbits ordered by a natural geometric weighting. We also prove the corresponding Central Limit Theorems describing the further features of the distribution of their weights. These results have direct applications to a wide variety of examples, including the case of Apollonian Circle Packings, Apollonian Triangle, expanding and parabolic rational functions, Farey maps, continued fractions, Mannenville-Pomeau maps, Schottky groups, Fuchsian groups, and many more. This gives a unified approach which both recovers known results and proves new results. Our new approach is founded on spectral properties of complexified Ruelle–Perron–Frobenius operators and Tauberian theorems as used in classical problems of prime number theory.


Author(s):  
Johann Franke

AbstractBased on the new approach to modular forms presented in [6] that uses rational functions, we prove a dominated convergence theorem for certain modular forms in the Eisenstein space. It states that certain rearrangements of the Fourier series will converge very fast near the cusp $$\tau = 0$$ τ = 0 . As an application, we consider L-functions associated to products of Eisenstein series and present natural generalized Dirichlet series representations that converge in an expanded half plane.



2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
C. F. Lo

We have presented a new unified approach to model the dynamics of both the sum and difference of two correlated lognormal stochastic variables. By the Lie-Trotter operator splitting method, both the sum and difference are shown to follow a shifted lognormal stochastic process, and approximate probability distributions are determined in closed form. Illustrative numerical examples are presented to demonstrate the validity and accuracy of these approximate distributions. In terms of the approximate probability distributions, we have also obtained an analytical series expansion of the exact solutions, which can allow us to improve the approximation in a systematic manner. Moreover, we believe that this new approach can be extended to study both (1) the algebraic sum ofNlognormals, and (2) the sum and difference of other correlated stochastic processes, for example, two correlated CEV processes, two correlated CIR processes, and two correlated lognormal processes with mean-reversion.



1986 ◽  
Vol 6 (3) ◽  
pp. 415-448 ◽  
Author(s):  
Karl Petersen

AbstractVarious definitions of the entropy for countable-state topological Markov chains are considered. Concrete examples show that these quantities do not coincide in general and can behave badly under nice maps. Certain restricted random walks which arise in a problem in magnetic recording provide interesting examples of chains. Factors of some of these chains have entropy equal to the growth rate of the number of periodic orbits, even though they contain no subshifts of finite type with positive entropy; others are almost sofic – they contain subshifts of finite type with entropy arbitrarily close to their own. Attempting to find the entropies of such subshifts of finite type motivates the method of entropy computation by loop analysis, in which it is not necessary to write down any matrices or evaluate any determinants. A method for variable-length encoding into these systems is proposed, and some of the smaller subshifts of finite type inside these systems are displayed.



1970 ◽  
Vol 2 (02) ◽  
pp. 355-369 ◽  
Author(s):  
Donald L. Iglehart ◽  
Ward Whitt

This paper is a sequel to [7], in which heavy traffic limit theorems were proved for various stochastic processes arising in a single queueing facility with r arrival channels and s service channels. Here we prove similar theorems for sequences of such queueing facilities. The same heavy traffic behavior prevails in many cases in this more general setting, but new heavy traffic behavior is observed when the sequence of traffic intensities associated with the sequence of queueing facilities approaches the critical value (ρ = 1) at appropriate rates.



1979 ◽  
Vol 16 (01) ◽  
pp. 154-162 ◽  
Author(s):  
Lars Holst

An urn contains A balls of each of N colours. At random n balls are drawn in succession without replacement, with replacement or with replacement together with S new balls of the same colour. Let Xk be the number of drawn balls having colour k, k = 1, …, N. For a given function f the characteristic function of the random variable ZM = f(X 1)+ … + f(XM ), M ≦ N, is derived. A limit theorem for ZM when M, N, n → ∞is proved by a general method. The theorem covers many special cases discussed separately in the literature. As applications of the theorem limit distributions are obtained for some occupancy problems and for dispersion statistics for the binomial, Poisson and negative-binomial distribution.



1978 ◽  
Vol 10 (04) ◽  
pp. 764-787
Author(s):  
J. N. McDonald ◽  
N. A. Weiss

At times n = 0, 1, 2, · · · a Poisson number of particles enter each state of a countable state space. The particles then move independently according to the transition law of a Markov chain, until their death which occurs at a random time. Several limit theorems are then proved for various functionals of this infinite particle system. In particular, laws of large numbers and central limit theorems are proved.



2021 ◽  
Vol 20 (9) ◽  
pp. 34-43
Author(s):  
Elizaveta S. Onufrieva ◽  
Irina V. Tresorukova

This paper discusses the problems of lexicographical representation of Modern Greek constructional phrasemes – productive phraseological patterns with one or more variable components (slots). The analysis of Modern Greek general and phraseological dictionaries has shown that, in Modern Greek lexicography, there is no unified approach towards the description of this type of phraseologisms. One of the significant problems associated with lexicographical treatment of Modern Greek constructional phrasemes is that some of them are registered in dictionaries as fully fixed expressions with their slot(s) filled with a specific lexeme or a specific proposition, without any indication that these expressions possess a variable component. Such lexicographical representation of productive phraseological patterns does not reflect the real linguistic usage and does not allow the reader of the dictionary to understand that the expressions described in the dictionary as fully fixed show considerable variation and possess one or two slots that can be filled with a wide range of words or word combinations. The corpus analysis of the constructional phraseme Ούτε να Ρ (literally, ‘neither if’), which is registered in Modern Greek dictionaries in five different, all fully lexically specified forms, has shown that the specific realizations of this productive phraseological pattern included in the dictionaries either have relatively low frequency of occurrence in the corpus, or are not encountered in the corpus at all. Other realizations of this phraseological pattern account for over 92 % of all the cases of its use in the corpus, but the common pattern behind them can hardly be identified with the help of the existing lexicographical descriptions, as it is registered in the dictionaries under the lemmas of five different lexemes that do not form part of its fixed component. Based on the findings of this study, the paper raises the issue of developing a new approach towards the description of productive phraseological patterns that currently pose a significant challenge for adequate lexicographical representation.



1992 ◽  
Vol 34 (2) ◽  
pp. 221-228 ◽  
Author(s):  
John M. Burns

In recent years a new approach to the study of compact symmetric spaces has been taken by Nagano and Chen [10]. This approach assigned to each pair of antipodal points on a closed geodesic a pair of totally geodesic submanifolds. In this paper we will show how these totally geodesic submanifolds can be used in conjunction with a theorem of Bott to compute homotopy in compact symmetric spaces. Some of the results are already known (see [1], [5], [11] for example) but we include them here for completeness and to illustrate this unified approach. We also exhibit a connection between the second homotopy group of a compact symmetric space and the multiplicity of the highest root. Using this in conjunction with a theorem of J. H. Cheng [6] we obtain a topological characterization of quaternionic symmetric spaces with antiquaternionic involutive isometry. The author would like to thank Prof T. Nagano for all his help and his detailed descriptions of the totally geodesic submanifolds mentioned above.



Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2260 ◽  
Author(s):  
Virginia Kiryakova

Evaluation of images of special functions under operators of fractional calculus has become a hot topic with hundreds of recently published papers. These are growing daily and we are able to comment here only on a few of them, including also some of the latest of 2019–2020, just for the purpose of illustrating our unified approach. Many authors are producing a flood of results for various operators of fractional order integration and differentiation and their generalizations of different special (and elementary) functions. This effect is natural because there are great varieties of special functions, respectively, of operators of (classical and generalized) fractional calculus, and thus, their combinations amount to a large number. As examples, we mentioned only two such operators from thousands of results found by a Google search. Most of the mentioned works use the same formal and standard procedures. Furthermore, in such results, often the originals and the images are special functions of different kinds, or the images are not recognized as known special functions, and thus are not easy to use. In this survey we present a unified approach to fulfill the mentioned task at once in a general setting and in a well visible form: for the operators of generalized fractional calculus (including also the classical operators of fractional calculus); and for all generalized hypergeometric functions such as pΨq and pFq, Fox H- and Meijer G-functions, thus incorporating wide classes of special functions. In this way, a great part of the results in the mentioned publications are well predicted and appear as very special cases of ours. The proposed general scheme is based on a few basic classical results (from the Bateman Project and works by Askey, Lavoie–Osler–Tremblay, etc.) combined with ideas and developments from more than 30 years of author’s research, and reflected in the cited recent works. The main idea is as follows: From one side, the operators considered by other authors are cases of generalized fractional calculus and so, are shown to be (m-times) compositions of weighted Riemann–Lioville, i.e., Erdélyi–Kober operators. On the other side, from each generalized hypergeometric function pΨq or pFq (p≤q or p=q+1) we can reach, from the final number of applications of such operators, one of the simplest cases where the classical results are known, for example: to 0Fq−p (hyper-Bessel functions, in particular trigonometric functions of order (q−p)), 0F0 (exponential function), or 1F0 (beta-distribution of form (1−z)αzβ). The final result, written explicitly, is that any GFC operator (of multiplicity m≥1) transforms a generalized hypergeometric function into the same kind of special function with indices p and q increased by m.



1990 ◽  
Vol 6 (4) ◽  
pp. 411-432 ◽  
Author(s):  
Katsuto Tanaka

A unified approach which I call the Fredholm approach is suggested for the study of asymptotic behavior of estimators and" test statistics arising from nonstationary and/or noninvertible time series models. Some limit theorems are given concerning the distribution of (the ratio of) quadratic (plus linear) forms in random variables generated by a linear process that is not necessarily stationary. Especially, the limiting characteristic function is derived explicitly via the Fredholm determinant and resolvent of a given kernel. Some examples are also shown to illustrate our methodology.



Sign in / Sign up

Export Citation Format

Share Document