scholarly journals On the construction of a complete Kähler-Einstein metric with negative scalar curvature near an isolated log-canonical singularity

Author(s):  
Hanlong Fang ◽  
Xin Fu
2013 ◽  
Vol 149 (9) ◽  
pp. 1495-1510 ◽  
Author(s):  
Osamu Fujino ◽  
Shunsuke Takagi

AbstractA singularity in characteristic zero is said to be of dense $F$-pure type if its modulo $p$ reduction is locally Frobenius split for infinitely many $p$. We prove that if $x\in X$ is an isolated log canonical singularity with $\mu (x\in X)\leq 2$ (where the invariant $\mu $ is as defined in Definition 1.4), then it is of dense $F$-pure type. As a corollary, we prove the equivalence of log canonicity and being of dense $F$-pure type in the case of three-dimensional isolated $ \mathbb{Q} $-Gorenstein normal singularities.


2009 ◽  
Vol 147 (2) ◽  
pp. 409-417 ◽  
Author(s):  
RAREŞ RǍSDEACONU ◽  
IOANA ŞUVAINA

AbstractWe show that each of the topological 4-manifolds $\bcp^2\# k\overline{\bcp^2}$, for k = 5, 6, 7, 8 admits a smooth structure which has an Einstein metric of scalar curvature s > 0, a smooth structure which carries an Einstein metric with s < 0 and infinitely many non-diffeomorphic smooth structures which do not admit Einstein metrics. We also exhibit new examples of higher dimensional manifolds carrying Einstein metrics of both positive and negative scalar curvature.


1992 ◽  
Vol 126 ◽  
pp. 89-101 ◽  
Author(s):  
Akira Fujiki

Let X be a compact Kähler manifold and γ Kähler class. For a Kàhler metric g on X we denote by Rg the scalar curvature on X According to Calabi [3][4], consider the functional defined on the set of all the Kähler metrics g whose Kähler forms belong to γ, where dvg is the volume form associated to g. Such a Kähler metric is called extremal if it gives a critical point of Ф. In particular, if Rg is constant, g is extremal. The converse is also true if dim L(X) = 0, where L(X) is the maximal connected linear algebraic subgroup of AutoX (cf. [5]). Note also that any Kähler-Einstein metric is of constant scalar curvature.


1997 ◽  
Vol 08 (01) ◽  
pp. 31-60 ◽  
Author(s):  
Charles P. Boyer ◽  
Krzysztof Galicki

Any compact 3-Sasakian manifold [Formula: see text] is a principal circle V-bundle over a compact complex orbifold [Formula: see text]. This orbifold has a contact Fano structure with a Kähler–Einstein metric of positive scalar curvature and it is the twistor space of a positive compact quaternionic Kähler orbifold [Formula: see text]. We show that many results known to hold when [Formula: see text] is a smooth manifold extend to this more general singular case. However, we construct infinite families of examples with [Formula: see text] which sharply differs from the smooth case, where there is only one such [Formula: see text].


1995 ◽  
Vol 06 (03) ◽  
pp. 419-437 ◽  
Author(s):  
CLAUDE LEBRUN

Let Z be a compact complex (2n+1)-manifold which carries a complex contact structure, meaning a codimension-1 holomorphic sub-bundle D⊂TZ which is maximally non-integrable. If Z admits a Kähler-Einstein metric of positive scalar curvature, we show that it is the Salamon twistor space of a quaternion-Kähler manifold (M4n, g). If Z also admits a second complex contact structure [Formula: see text], then Z=CP2n+1. As an application, we give several new characterizations of the Riemannian manifold HPn= Sp(n+1)/(Sp(n)×Sp(1)).


Author(s):  
Paula Tretkoff

This chapter justifies the assumption that ball quotients covering line arrangements exist. It begins with the general case on the existence of finite covers by ball quotients of weighted configurations, focusing on log-canonical divisors and Euler numbers reflecting the weight data on divisors on the blow-up X of P2 at the singular points of a line arrangement. It then uses the Kähler-Einstein property to prove an inequality between Chern forms that, when integrated, gives the appropriate Miyaoka-Yau inequality. It also discusses orbifolds and b-spaces, weighted line arrangements, the problem of the existence of ball quotient finite coverings, log-terminal singularity and log-canonical singularity, and the proof of the main existence theorem for line arrangements. Finally, it considers the isotropy subgroups of the covering group.


2020 ◽  
Vol 5 (3) ◽  
pp. 639-676
Author(s):  
Michael Hallam ◽  
Varghese Mathai

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Jacob Sonnenschein ◽  
Dorin Weissman

Abstract Classical rotating closed string are folded strings. At the folding points the scalar curvature associated with the induced metric diverges. As a consequence one cannot properly quantize the fluctuations around the classical solution since there is no complete set of normalizable eigenmodes. Furthermore in the non-critical effective string action of Polchinski and Strominger, there is a divergence associated with the folds. We overcome this obstacle by putting a massive particle at each folding point which can be used as a regulator. Using this method we compute the spectrum of quantum fluctuations around the rotating string and the intercept of the leading Regge trajectory. The results we find are that the intercepts are a = 1 and a = 2 for the open and closed string respectively, independent of the target space dimension. We argue that in generic theories with an effective string description, one can expect corrections from finite masses associated with either the endpoints of an open string or the folding points on a closed string. We compute explicitly the corrections in the presence of these masses.


Author(s):  
Yoshinobu Kamishima

AbstractWe study some types of qc-Einstein manifolds with zero qc-scalar curvature introduced by S. Ivanov and D. Vassilev. Secondly, we shall construct a family of quaternionic Hermitian metrics $$(g_a,\{J_\alpha \}_{\alpha =1}^3)$$ ( g a , { J α } α = 1 3 ) on the domain Y of the standard quaternion space $${\mathbb {H}}^n$$ H n one of which, say $$(g_a,J_1)$$ ( g a , J 1 ) is a Bochner flat Kähler metric. To do so, we deform conformally the standard quaternionic contact structure on the domain X of the quaternionic Heisenberg Lie group$${{\mathcal {M}}}$$ M to obtain quaternionic Hermitian metrics on the quotient Y of X by $${\mathbb {R}}^3$$ R 3 .


Sign in / Sign up

Export Citation Format

Share Document