scholarly journals Symplectic leaves and deformation quantization

1996 ◽  
Vol 124 (1) ◽  
pp. 95-100
Author(s):  
Albert J. L. Sheu
1995 ◽  
Vol 10 (05) ◽  
pp. 399-407 ◽  
Author(s):  
A. STERN ◽  
I. YAKUSHIN

We perform a deformation quantization of the classical isotropic rigid rotator. The resulting quantum system is not invariant under the usual SU (2) × SU (2) chiral symmetry, but instead [Formula: see text]. We give the energy spectrum for the resulting system.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Marieke van Beest ◽  
Antoine Bourget ◽  
Julius Eckhard ◽  
Sakura Schäfer-Nameki

Abstract We derive the structure of the Higgs branch of 5d superconformal field theories or gauge theories from their realization as a generalized toric polygon (or dot diagram). This approach is motivated by a dual, tropical curve decomposition of the (p, q) 5-brane-web system. We define an edge coloring, which provides a decomposition of the generalized toric polygon into a refined Minkowski sum of sub-polygons, from which we compute the magnetic quiver. The Coulomb branch of the magnetic quiver is then conjecturally identified with the 5d Higgs branch. Furthermore, from partial resolutions, we identify the symplectic leaves of the Higgs branch and thereby the entire foliation structure. In the case of strictly toric polygons, this approach reduces to the description of deformations of the Calabi-Yau singularities in terms of Minkowski sums.


2000 ◽  
Vol 11 (04) ◽  
pp. 523-551 ◽  
Author(s):  
VINAY KATHOTIA

We relate a universal formula for the deformation quantization of Poisson structures (⋆-products) on ℝd proposed by Maxim Kontsevich to the Campbell–Baker–Hausdorff (CBH) formula. We show that Kontsevich's formula can be viewed as exp (P) where P is a bi-differential operator that is a deformation of the given Poisson structure. For linear Poisson structures (duals of Lie algebras) his product takes the form exp (C+L) where exp (C) is the ⋆-product given by the universal enveloping algebra via symmetrization, essentially the CBH formula. This is established by showing that the two products are identical on duals of nilpotent Lie algebras where the operator L vanishes. This completely determines part of Kontsevich's formula and leads to a new scheme for computing the CBH formula. The main tool is a graphical analysis for bi-differential operators and the computation of certain iterated integrals that yield the Bernoulli numbers.


2004 ◽  
Vol 19 (3-4) ◽  
pp. 199-203 ◽  
Author(s):  
Cosmas K. Zachos ◽  
Thomas L. Curtright

2016 ◽  
Vol 13 (08) ◽  
pp. 1630010
Author(s):  
Paolo Aschieri

We outline how Drinfeld twist deformation techniques can be applied to the deformation quantization of principal bundles into noncommutative principal bundles and, more in general, to the deformation of Hopf–Galois extensions. First, we twist deform the structure group in a quantum group, and this leads to a deformation of the fibers of the principal bundle. Next, we twist deform a subgroup of the group of automorphisms of the principal bundle, and this leads to a noncommutative base space. Considering both deformations, we obtain noncommutative principal bundles with noncommutative fiber and base space as well.


1993 ◽  
Vol 153 (1) ◽  
pp. 49-76 ◽  
Author(s):  
David Borthwick ◽  
Slawomir Klimek ◽  
Andrzej Lesniewski ◽  
Maurizio Rinaldi

Sign in / Sign up

Export Citation Format

Share Document