scholarly journals TheSaccharomyces cerevisiaev-SNARE Vti1p Is Required for Multiple Membrane Transport Pathways to the Vacuole

1999 ◽  
Vol 10 (6) ◽  
pp. 1719-1732 ◽  
Author(s):  
Gabriele Fischer von Mollard ◽  
Tom H. Stevens

The interaction between v-SNAREs on transport vesicles and t-SNAREs on target membranes is required for membrane traffic in eukaryotic cells. Here we identify Vti1p as the first v-SNARE protein found to be required for biosynthetic traffic into the yeast vacuole, the equivalent of the mammalian lysosome. Certain vti1-tsyeast mutants are defective in alkaline phosphatase transport from the Golgi to the vacuole and in targeting of aminopeptidase I from the cytosol to the vacuole. VTI1 interacts genetically with the vacuolar t-SNARE VAM3, which is required for transport of both alkaline phosphatase and aminopeptidase I to the vacuole. The v-SNARE Nyv1p forms a SNARE complex with Vam3p in homotypic vacuolar fusion; however, we find that Nyv1p is not required for any of the three biosynthetic pathways to the vacuole. v-SNAREs were thought to ensure specificity in membrane traffic. However, Vti1p also functions in two additional membrane traffic pathways: Vti1p interacts with the t-SNAREs Pep12p in traffic from the TGN to the prevacuolar compartment and with Sed5p in retrograde traffic to the cis-Golgi. The ability of Vti1p to mediate multiple fusion steps requires additional proteins to ensure specificity in membrane traffic.

2003 ◽  
Vol 14 (5) ◽  
pp. 1868-1881 ◽  
Author(s):  
Youngseok Kweon ◽  
Anca Rothe ◽  
Elizabeth Conibear ◽  
Tom H. Stevens

Intracellular membrane fusion requires that membrane-bound soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins on both vesicle and target membranes form a highly specific complex necessary to bring the membranes close in space. Ykt6p is a yeast R-SNARE protein that has been implicated in retrograde transport to the cis-Golgi compartment. Ykt6p has been also been found to fractionate with vacuole membranes and participate in a vacuolar SNARE complex in homotypic vacuole fusion. To investigate the role of Ykt6p in membrane traffic to the vacuole we generated temperature-sensitive mutations in YKT6. One mutation produces an early Golgi block to secretion, and overexpression of the SNARE protein Sft1p suppresses the growth and secretion defects of this mutation. These results are consistent with Ykt6p and Sft1p participating in a SNARE complex associated with retrograde transport to the cis-Golgi. A second set of mutations in YKT6 specifically affects post-Golgi membrane traffic to the vacuole, and the effects of these mutations are not suppressed by Sft1p overexpression. Defects are seen in carboxypeptidase Y sorting, alkaline phosphatase transport, and aminopeptidase I delivery, and in one mutant, overexpression of the SNARE protein Nyv1p suppresses the alkaline phosphatase transport defect. By mutationally separating early and late requirements for Ykt6p, our findings have revealed that Ykt6p is a R-SNARE protein that functions directly in the three biosynthetic pathways to the vacuole.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 105-122 ◽  
Author(s):  
Amit Srivastava ◽  
Carol A Woolford ◽  
Elizabeth W Jones

Abstract Pep3p and Pep5p are known to be necessary for trafficking of hydrolase precursors to the vacuole and for vacuolar biogenesis. These proteins are present in a hetero-oligomeric complex that mediates transport at the vacuolar membrane. PEP5 interacts genetically with VPS8, implicating Pep5p in the earlier Golgi to endosome step and/or in recycling from the endosome to the Golgi. To understand further the cellular roles of Pep3p and Pep5p, we isolated and characterized a set of pep3 conditional mutants. Characterization of mutants revealed that pep3ts mutants are defective in the endosomal and nonendosomal Golgi to vacuole transport pathways, in the cytoplasm to vacuole targeting pathway, in recycling from the endosome back to the late Golgi, and in endocytosis. PEP3 interacts genetically with two members of the endosomal SNARE complex, PEP12 (t-SNARE) and PEP7 (homologue of mammalian EEA1); Pep3p and Pep5p associate physically with Pep7p as revealed by two-hybrid analysis. Our results suggest that a core Pep3p/Pep5p complex promotes vesicular docking/fusion reactions in conjunction with SNARE proteins at multiple steps in transport routes to the vacuole. We propose that this complex may be responsible for tethering transport vesicles on target membranes.


1998 ◽  
Vol 9 (7) ◽  
pp. 1633-1647 ◽  
Author(s):  
Eileithyia Swanton ◽  
John Sheehan ◽  
Naomi Bishop ◽  
Stephen High ◽  
Philip Woodman

Specificity of vesicular transport is determined by pair-wise interaction between receptors (SNAP receptors or SNAREs) associated with a transport vesicle and its target membrane. Two additional factors, N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment protein (SNAP) are ubiquitous components of vesicular transport pathways. However, the precise role they play is not known. On the basis that NSF and SNAP can be recruited to preformed SNARE complexes, it has been proposed that NSF- and SNAP-containing complexes are formed after SNARE-dependent docking of transport vesicles. This would enable ATPase-dependent complex disassembly to be coupled directly to membrane fusion. Alternatively, binding and release of NSF/SNAP may occur before vesicle docking, and perhaps be involved in the activation of SNAREs. To gain more information about the point at which so-called 20S complexes form during the transport vesicle cycle, we have examined NSF/SNAP/SNARE complex turnover on clathrin-coated vesicle–derived membranes in situ. This has been achieved under conditions in which the extent of membrane docking can be precisely monitored. We demonstrate by UV-dependent cross-linking experiments, coupled to laser light-scattering analysis of membranes, that complexes containing NSF, SNAP, and SNAREs will form and dissociate on the surface of undocked transport vesicles.


2001 ◽  
Vol 12 (12) ◽  
pp. 3733-3743 ◽  
Author(s):  
Anton A. Sanderfoot ◽  
Valya Kovaleva ◽  
Diane C. Bassham ◽  
Natasha V. Raikhel

The syntaxin family of soluble N-ethyl maleimide sensitive factor adaptor protein receptors (SNAREs) is known to play an important role in the fusion of transport vesicles with specific organelles. Twenty-four syntaxins are encoded in the genome of the model plant Arabidopsis thaliana. These 24 genes are found in 10 gene families and have been reclassified as syntaxins of plants (SYPs). Some of these gene families have been previously characterized, with the SYP2-type syntaxins being found in the prevacuolar compartment (PVC) and the SYP4-type syntaxins on thetrans-Golgi network (TGN). Here we report on two previously uncharacterized syntaxin groups. The SYP5 group is encoded by a two-member gene family, whereas SYP61 is a single gene. Both types of syntaxins are localized to multiple compartments of the endomembrane system, including the TGN and the PVC. These two groups of syntaxins form SNARE complexes with each other, and with other Arabidopsis SNAREs. On the TGN, SYP61 forms complexes with the SNARE VTI12 and either SYP41 or SYP42. SYP51 and SYP61 interact with each other and with VTI12, most likely also on the TGN. On the PVC, a SYP5-type syntaxin interacts specifically with a SYP2-type syntaxin, as well as the SNARE VTI11, forming a SNARE complex likely involved in TGN-to-PVC trafficking.


2003 ◽  
Vol 14 (4) ◽  
pp. 1610-1623 ◽  
Author(s):  
Elizabeth Conibear ◽  
Jessica N. Cleck ◽  
Tom H. Stevens

Multisubunit tethering complexes may contribute to the specificity of membrane fusion events by linking transport vesicles to their target membrane in an initial recognition event that promotes SNARE assembly. However, the interactions that link tethering factors to the other components of the vesicle fusion machinery are still largely unknown. We have previously identified three subunits of a Golgi-localized complex (the Vps52/53/54 complex) that is required for retrograde transport to the late Golgi. This complex interacts with a Rab and a SNARE protein found at the late Golgi and is related to two other multisubunit tethering complexes: the COG complex and the exocyst. Here we show that the Vps52/53/54 complex has an additional subunit, Vps51p. All four members of this tetrameric GARP (Golgi-associated retrograde protein) complex are required for two distinct retrograde transport pathways, from both early and late endosomes, back to the TGN.vps51 mutants exhibit a distinct phenotype suggestive of a regulatory role. Indeed, we find that Vps51p mediates the interaction between Vps52/53/54 and the t-SNARE Tlg1p. The binding of this small, coiled-coil protein to the conserved N-terminal domain of the t-SNARE therefore provides a crucial link between components of the tethering and the fusion machinery.


1997 ◽  
Vol 137 (7) ◽  
pp. 1511-1524 ◽  
Author(s):  
Gabriele Fischer von Mollard ◽  
Steven F. Nothwehr ◽  
Tom H. Stevens

Membrane traffic in eukaryotic cells requires that specific v-SNAREs on transport vesicles interact with specific t-SNAREs on target membranes. We identified a novel Saccharomyces cerevisiae v-SNARE (Vti1p) encoded by the essential gene, VTI1. Vti1p interacts with the prevacuolar t-SNARE Pep12p to direct Golgi to prevacuolar traffic. vti1-1 mutant cells missorted and secreted the soluble vacuolar hydrolase carboxypeptidase Y (CPY) rapidly and reversibly when vti1-1 cells were shifted to the restrictive temperature. However, overexpression of Pep12p suppressed the CPY secretion defect exhibited by vti1-1 cells at 36°C. Characterization of a second vti1 mutant, vti1-11, revealed that Vti1p also plays a role in membrane traffic at a cis-Golgi stage. vti1-11 mutant cells displayed a growth defect and accumulated the ER and early Golgi forms of both CPY and the secreted protein invertase at the nonpermissive temperature. Overexpression of the yeast cis-Golgi t-SNARE Sed5p suppressed the accumulation of the ER form of CPY but did not lead to CPY transport to the vacuole in vti1-11 cells. Overexpression of Sed5p allowed growth in the absence of Vti1p. In vitro binding and coimmunoprecipitation studies revealed that Vti1p interacts directly with the two t-SNAREs, Sed5p and Pep12p. These data suggest that Vti1p plays a role in cis-Golgi membrane traffic, which is essential for yeast viability, and a nonessential role in the fusion of Golgi-derived vesicles with the prevacuolar compartment. Therefore, a single v-SNARE can interact functionally with two different t-SNAREs in directing membrane traffic in yeast.


Genetics ◽  
1997 ◽  
Vol 147 (2) ◽  
pp. 467-478 ◽  
Author(s):  
Gene C Webb ◽  
Marloes Hoedt ◽  
Lynn J Poole ◽  
Elizabeth W Jones

The PEP7 gene from Saccharomyces cerevisiae encodes a 59-kD hydrophilic polypeptide that is required for transport of soluble vacuolar hydrolase precursors from the TGN to the endosome. This study presents the results of a high-copy suppression analysis of pep7-20 mutant phenotypes. This analysis demonstrated that both VPS45 and PEP12 are allele-specific high-copy suppressors of pep7-20 mutant phenotypes. Overexpression of VPS45 was able to completely suppress the Zn2+ sensitivity and partially suppress the carboxypeptidase Y deficiency. Overexpression of PEP12 was able to do the same, but to a lesser extent. Vps45p and Pep12p are Sec1p and syntaxin (t-SNARE) homologues, respectively, and are also thought to function in transport between the TGN and endosome. Two additional vacuole pathway SNARE complex homologues, Vps33p (Sec1p) and Pth1p (syntaxin), when overexpressed, were unable to suppress pep7-20 or any other pep7 allele, further supporting the specificity of the interactions of pep7-20 with PEP12 and VPS45. Because several other vesicle docking/fusion reactions take place in the cell without discernible participation of Pep7p homologues, we suggest that Pep7p is a step-specific regulator of docking and/or fusion of TGN-derived transport vesicles onto the endosome.


2005 ◽  
Vol 168 (7) ◽  
pp. 1039-1051 ◽  
Author(s):  
Akira Honda ◽  
Omayma S. Al-Awar ◽  
Jesse C. Hay ◽  
Julie G. Donaldson

Arf and Rab family GTPases regulate membrane traffic in cells, yet little is known about how they are targeted to distinct organelles. To identify sequences in Arf-1 necessary for Golgi targeting, we examined the localization of chimeras between Arf-1 and Arf-6. Here, we identify a 16–amino acid sequence in Arf-1 that specifies Golgi targeting and contains a motif (MXXE) that is important for Arf-1 binding to membrin, an ER-Golgi SNARE protein. The MXXE motif is conserved in all Arfs known to localize to the Golgi and enables Arf-1 to localize to the early Golgi. Arf-1 lacking these 16 aa can still localize to the late Golgi where it displays a more rapid Golgi-cytosol cycle than wild-type Arf-1. These studies suggest that membrin recruits Arf-1 to the early Golgi and reveal distinct kinetic cycles for Arf-1 at early and late Golgi determined by different sets of Arf regulators and effectors.


2018 ◽  
Vol 115 (27) ◽  
pp. E6227-E6236 ◽  
Author(s):  
Dominik P. Buser ◽  
Kai D. Schleicher ◽  
Cristina Prescianotto-Baschong ◽  
Martin Spiess

Retrograde transport of membranes and proteins from the cell surface to the Golgi and beyond is essential to maintain homeostasis, compartment identity, and physiological functions. To study retrograde traffic biochemically, by live-cell imaging or by electron microscopy, we engineered functionalized anti-GFP nanobodies (camelid VHH antibody domains) to be bacterially expressed and purified. Tyrosine sulfation consensus sequences were fused to the nanobody for biochemical detection of trans-Golgi arrival, fluorophores for fluorescence microscopy and live imaging, and APEX2 (ascorbate peroxidase 2) for electron microscopy and compartment ablation. These functionalized nanobodies are specifically captured by GFP-modified reporter proteins at the cell surface and transported piggyback to the reporters’ homing compartments. As an application of this tool, we have used it to determine the contribution of adaptor protein-1/clathrin in retrograde transport kinetics of the mannose-6-phosphate receptors from endosomes back to the trans-Golgi network. Our experiments establish functionalized nanobodies as a powerful tool to demonstrate and quantify retrograde transport pathways.


Sign in / Sign up

Export Citation Format

Share Document