scholarly journals Sequential Activities of Phosphoinositide 3-Kinase, PKB/Akt, and Rab7 during Macropinosome Formation inDictyostelium

2001 ◽  
Vol 12 (9) ◽  
pp. 2813-2824 ◽  
Author(s):  
Adam Rupper ◽  
Kyung Lee ◽  
David Knecht ◽  
James Cardelli

Macropinocytosis plays an important role in the internalization of antigens by dendritic cells and is the route of entry for many bacterial pathogens; however, little is known about the molecular mechanisms that regulate the formation or maturation of macropinosomes. Like dendritic cells, Dictyostelium amoebae are active in macropinocytosis, and various proteins have been identified that contribute to this process. As described here, microscopic analysis of null mutants have revealed that the class I phosphoinositide 3-kinases, PIK1 and PIK2, and the downstream effector protein kinase B (PKB/Akt) are important in regulating completion of macropinocytosis. Although actin-rich membrane protrusions form in these cell lines, they recede without forming macropinosomes. Imaging of cells expressing green fluorescent protein (GFP) fused to the pleckstrin homology domain (PH) of PKB (GFP-PHPKB) indicates that D3 phosphoinositides are enriched in the forming macropinocytic cup and remain associated with newly formed macropinosomes for <1 minute. A fusion protein, consisting of GFP fused to an F-actin binding domain, overlaps with GFP-PHPKB in the timing of association with forming macropinosomes. Although macropinocytosis is reduced in cells expressing dominant negative Rab7, microscopic imaging studies reveal that GFP-Rab7 associates only with formed macropinosomes at approximately the time that F-actin and D3 phosphoinositide levels decrease. These results support a model in which F-actin modulating proteins and vesicle trafficking proteins coordinately regulate the formation and maturation of macropinosomes.

2003 ◽  
Vol 375 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Steeve HOULE ◽  
François MARCEAU

Wortmannin reportedly induces the formation of enlarged cytoplasmic endosomes. Such vesicles were observed in a definite time window after wortmannin treatment (250 nM) in HEK-293 cells stably expressing a B2R (B2 receptor)–green fluorescent protein conjugate and other cell types. The alternative PI3K (phosphoinositide 3-kinase) inhibitor LY 294002 (100 μM) and a dominant-negative form of the enzyme (p85α ΔiSH2) induce a more modest vesicle enlargement. PI3K inhibition by drugs did not affect agonist-induced [3H]arachidonate release. The wortmannin-induced formation of giant endosomes also involves Rab5 activity, since a dominant-negative form of this GTPase (Rab5 S34N) partially inhibits the wortmannin effect and a constitutively active form of Rab5 (Rab5 Q79L) induces the formation of enlarged endosomes. Moreover, agonist stimulation targeted B2R–green fluorescent protein towards the periphery of the giant vesicles and led to partial receptor degradation only in wortmannin-treated cells. Receptor degradation was decreased by protease inhibitors and by bafilomycin A1, a drug that inhibits lysosome function. Accumulation of fluorescent material inside the enlarged endosomes was observed in cells treated with bafilomycin A1, wortmannin and an agonist. [3H]Bradykinin binding was decreased in HEK-293 cells treated with both wortmannin and the agonist, but not with either separately. Furthermore, a wortmannin-induced functional down-regulation of B2R was observed in rabbit jugular veins after repeated agonist stimulation (contractility assay). This is the first report of a G-protein-coupled receptor down-regulation induced by an alteration of its usual routing in the cell. These results suggest that both PI3K and Rab5 influence B2R intracellular trafficking.


2004 ◽  
Vol 359 (1445) ◽  
pp. 745-751 ◽  
Author(s):  
J. M. W. Slack ◽  
C. W. Beck ◽  
C. Gargioli ◽  
B. Christen

We have employed transgenic methods combined with embryonic grafting to analyse the mechanisms of regeneration in Xenopus tadpoles. The Xenopus tadpole tail contains a spinal cord, notochord and segmented muscles, and all tissues are replaced when the tail regenerates after amputation. We show that there is a refractory period of very low regenerative ability in the early tadpole stage. Tracing of cell lineage with the use of single tissue transgenic grafts labelled with green fluorescent protein (GFP) shows that there is no de-differentiation and no metaplasia during regeneration. The spinal cord, notochord and muscle all regenerate from the corresponding tissue in the stump; in the case of the muscle the satellite cells provide the material for regeneration. By using constitutive or dominant negative gene products, induced under the control of a heat shock promoter, we show that the bone morphogenetic protein (BMP) and Notch signalling pathways are both essential for regeneration. BMP is upstream of Notch and has an independent effect on regeneration of muscle. The Xenopus limb bud will regenerate completely at the early stages but regenerative ability falls during digit differentiation. We have developed a procedure for making tadpoles in which one hindlimb is transgenic and the remainder wild-type. This has been used to introduce various gene products expected to prolong the period of regenerative capacity, but none has so far been successful.


Endocrinology ◽  
2015 ◽  
Vol 157 (2) ◽  
pp. 831-843 ◽  
Author(s):  
Brian S. Edwards ◽  
An K. Dang ◽  
Dilyara A. Murtazina ◽  
Melissa G. Dozier ◽  
Jennifer D. Whitesell ◽  
...  

Abstract We have shown that GnRH-mediated engagement of the cytoskeleton induces cell movement and is necessary for ERK activation. It also has previously been established that a dominant negative form of the mechano-GTPase dynamin (K44A) attenuates GnRH activation of ERK. At present, it is not clear at what level these cellular events might be linked. To explore this, we used live cell imaging in the gonadotrope-derived αT3–1 cell line to determine that dynamin-green fluorescent protein accumulated in GnRH-induced lamellipodia and plasma membrane protrusions. Coincident with translocation of dynamin-green fluorescent protein to the plasma membrane, we demonstrated that dynamin colocalizes with the actin cytoskeleton and the actin binding protein, cortactin at the leading edge of the plasma membrane. We next wanted to assess the physiological significance of these findings by inhibiting dynamin GTPase activity using dynasore. We find that dynasore suppresses activation of ERK, but not c-Jun N-terminal kinase, after exposure to GnRH agonist. Furthermore, exposure of αT3–1 cells to dynasore inhibited GnRH-induced cyto-architectural rearrangements. Recently it has been discovered that GnRH induced Ca2+ influx via the L-type Ca2+ channels requires an intact cytoskeleton to mediate ERK phosphorylation. Interestingly, not only does dynasore attenuate GnRH-mediated actin reorganization, it also suppresses Ca2+ influx through L-type Ca2+ channels visualized in living cells using total internal reflection fluorescence microscopy. Collectively, our data suggest that GnRH-induced membrane remodeling events are mediated in part by the association of dynamin and cortactin engaging the actin cytoskeleton, which then regulates Ca2+ influx via L-type channels to facilitate ERK phosphorylation.


1999 ◽  
Vol 112 (22) ◽  
pp. 4101-4112 ◽  
Author(s):  
K. Ojima ◽  
Z.X. Lin ◽  
Z.Q. Zhang ◽  
T. Hijikata ◽  
S. Holtzer ◽  
...  

While over a dozen I-Z-I proteins are expressed in postmitotic myoblasts and myotubes it is unclear how, when, or where these first assemble into transitory I-Z-I bodies (thin filament/Z-band precursors) and, a short time later, into definitive I-Z-I bands. By double-staining the growth tips of transfected myotubes expressing (a) MYC-tagged s-alpha-actinins (MYC/s-alpha-actinins) or (b) green fluorescent protein-tagged titin cap (GFP/T-cap) with antibodies against MYC and I-Z-I band proteins, we found that the de novo assembly of I-Z-I bodies and their maturation into I-Z-I bands involved relatively concurrent, cooperative binding and reconfiguration of, at a minimum, 5 integral Z-band molecules. These included s-alpha-actinin, nebulin, titin, T-cap and alpha-actin. Resolution of the approximately 1.0 microm polarized alpha-actin/nebulin/tropomyosin/troponin thin filament complexes occurred subsequent to the maturation of Z-bands into a dense tetragonal configuration. Of particular interest is finding that mutant MYC/s-alpha-actinin peptides (a) lacking spectrin-like repeats 1–4, or consisting of spectrin-like repeats 1–4 only, as well as (b) mutants/fragments lacking titin or alpha-actin binding sites, were promptly and exclusively incorporated into de novo assembling I-Z-I bodies and definitive I-Z-I bands as was exogenous full length MYC/s-alpha-actinin or GFP/T-cap.


2005 ◽  
Vol 22 (3) ◽  
pp. 412-421 ◽  
Author(s):  
Mira Wouters ◽  
Karine Smans ◽  
Jean-Marie Vanderwinden

In the small intestine, interstitial cells of Cajal (ICC) surrounding the myenteric plexus generate the pacemaking slow waves that are essential for an efficient intestinal transit. The underlying molecular mechanisms of the slow wave are poorly known. KIT is currently the sole practical marker for ICC. Attempts to purify living ICC have so far largely failed, due to the loss of the KIT epitope during enzymatic dissociation. Aiming to identify and isolate living ICC, we designed a knock-in strategy to express a fluorescent tag in KIT-expressing cells by inserting the sequence of the novel green fluorescent protein ZsGreen into the first exon of the c-Kit gene, creating a null allele called WZsGreen. In the gastrointestinal tract of heterozygous WZsGreen/+ mice, tiny ZsGreen fluorescent dots were observed in all KIT-expressing ICC populations, with exception of ICC at the deep muscular plexus in small intestine. During development of the gastrointestinal tract, ZsGreen expression followed KIT expression in a spatiotemporal way. Stellate and basket KIT-expressing cells in the molecular layer of the cerebellum also exhibited ZsGreen dots, whereas no ZsGreen was detected in skin, testis, and bone marrow. ZsGreen dot-containing intestinal cells could be isolated from jejunum and maintained alive in culture for at least 3 days. ZsGreen is a suitable alternative to EGFP in transgenic animals. The novel WZsGreen/+ model reported here appears to be a promising tool for live studies of KIT-expressing cells in the gastrointestinal tract and cerebellum and for the further analysis of pacemaker mechanisms.


2003 ◽  
Vol 66 (11) ◽  
pp. 2045-2050 ◽  
Author(s):  
YI ZHANG ◽  
MANSEL W. GRIFFITHS

Heat shock proteins play an important role in protecting bacterial cells against several stresses, including starvation. In this study, the promoters for two genes encoding heat shock proteins involved in many stress responses, UspA and GrpE, were fused with the green fluorescent protein (gfp) gene. Thus, the expression of the two genes could be quantified by measuring the fluorescence emitted by the cells under different environmental conditions. The heat resistance levels of starved and nonstarved cells during storage at 5, 10, and 37°C were compared with the levels of expression of the uspA and grpE genes. D52-values (times required for decimal reductions in count at 52°C) increased by 11.5, 14.6, and 18.5 min when cells were starved for 3 h at 37°C, for 24 h at 10°C, and for 2 days at 5°C, respectively. In all cases, these increases were significant (P &lt; 0.01), indicating that the stress imposed by starvation altered the ability of E. coli O157:H7 to survive subsequent heat treatments. Thermal tolerance was correlative with the induction of UspA and GrpE. At 5°C, the change in the thermal tolerance of the pathogen was positively linked to the induced expression of the grpE gene but negatively related to the expression of the uspA gene. The results obtained in this study indicate that UspA plays an important role in starvation-induced thermal tolerance at 37°C but that GrpE may be more involved in regulating this response at lower temperatures. An improvement in our understanding of the molecular mechanisms involved in these cross-protection responses may make it possible to devise strategies to limit their effects.


2017 ◽  
Vol 23 (4) ◽  
pp. 401-409 ◽  
Author(s):  
Tomohiro Segawa ◽  
Kaoru Hazeki ◽  
Kiyomi Nigorikawa ◽  
Atsuko Nukuda ◽  
Tomoki Tanizawa ◽  
...  

The relative abundance of phosphoinositide (PI) species on the phagosome membrane fluctuates over the course of phagocytosis. PtdIns(3,4,5)P3 and PtdIns(3,4)P2 rapidly increase in the forming of the phagocytic cup, following which they disappear after sealing of the cup. In the present study, we monitored the clearance of these PI species using the enhanced green fluorescent protein-fused pleckstrin homology domain of Akt, a fluorescence probe that binds both PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in Raw 264.7 macrophages. The clearance of PIs was much faster when the phagocytosed particles were coated with IgG. The effect of IgG was not observed in the macrophages deficient in FcγRIIb, an inhibitory IgG receptor. To identify the lipid phosphatases responsible for the FcγRIIb-accelerated PI clearance, we prepared a panel of lipid phosphatase-deficient cells. The lack of a PI 5-phosphatase Src homology 2 domain-containing inositol-5-phosphatase (SHIP)1 or SHIP2 impaired the FcγRIIb-accelerated clearance of PIs. The lack of a PI 4-phosphatase Inpp4a also impaired the accelerated PIs clearance. In the FcγRIIb- and Inpp4a-deficient cells, acidification of the formed phagosome was slowed. These results suggested that FcγRIIb drives the sequential dephosphorylation system comprising SHIPs and Inpp4a, and accelerates phagosome acidification.


2003 ◽  
Vol 14 (10) ◽  
pp. 4155-4161 ◽  
Author(s):  
Kathleen N. Riley ◽  
Angel E. Maldonado ◽  
Patrice Tellier ◽  
Crislyn D'Souza-Schorey ◽  
Ira M. Herman

To understand the role that ARF6 plays in regulating isoactin dynamics and cell motility, we transfected endothelial cells (EC) with HA-tagged ARF6: the wild-type form (WT), a constitutively-active form unable to hydrolyze GTP (Q67L), and two dominant-negative forms, which are either unable to release GDP (T27N) or fail to bind nucleotide (N122I). Motility was assessed by digital imaging microscopy before Western blot analysis, coimmunoprecipitation, or colocalization studies using ARF6, β-actin, or β-actin-binding protein-specific antibodies. EC expressing ARF6-Q67L spread and close in vitro wounds at twice the control rates. EC expressing dominant-negative ARF6 fail to develop a leading edge, are unable to ruffle their membranes (N122I), and possess arborized processes. Colocalization studies reveal that the Q67L and WT ARF6-HA are enriched at the leading edge with β-actin; but T27N and N122I ARF6-HA are localized on endosomes together with the β-actin capping protein, βcap73. Coimmunoprecipitation and Western blot analyses reveal the direct association of ARF6-HA with βcap73, defining a role for ARF6 in signaling cytoskeletal remodeling during motility. Knowledge of the role that ARF6 plays in orchestrating membrane and β-actin dynamics will help to reveal molecular mechanisms regulating actin-based motility during development and disease.


2001 ◽  
Vol 152 (1) ◽  
pp. 111-126 ◽  
Author(s):  
David Michaelson ◽  
Joseph Silletti ◽  
Gretchen Murphy ◽  
Peter D'Eustachio ◽  
Mark Rush ◽  
...  

Determinants of membrane targeting of Rho proteins were investigated in live cells with green fluorescent fusion proteins expressed with or without Rho-guanine nucleotide dissociation inhibitor (GDI)α. The hypervariable region determined to which membrane compartment each protein was targeted. Targeting was regulated by binding to RhoGDIα in the case of RhoA, Rac1, Rac2, and Cdc42hs but not RhoB or TC10. Although RhoB localized to the plasma membrane (PM), Golgi, and motile peri-Golgi vesicles, TC10 localized to PMs and endosomes. Inhibition of palmitoylation mislocalized H-Ras, RhoB, and TC10 to the endoplasmic reticulum. Although overexpressed Cdc42hs and Rac2 were observed predominantly on endomembrane, Rac1 was predominantly at the PM. RhoA was cytosolic even when expressed at levels in vast excess of RhoGDIα. Oncogenic Dbl stimulated translocation of green fluorescent protein (GFP)-Rac1, GFP-Cdc42hs, and GFP-RhoA to lamellipodia. RhoGDI binding to GFP-Cdc42hs was not affected by substituting farnesylation for geranylgeranylation. A palmitoylation site inserted into RhoA blocked RhoGDIα binding. Mutations that render RhoA, Cdc42hs, or Rac1, either constitutively active or dominant negative abrogated binding to RhoGDIα and redirected expression to both PMs and internal membranes. Thus, despite the common essential feature of the CAAX (prenylation, AAX tripeptide proteolysis, and carboxyl methylation) motif, the subcellular localizations of Rho GTPases, like their functions, are diverse and dynamic.


2011 ◽  
Vol 441 (1) ◽  
pp. 407-416 ◽  
Author(s):  
Sung Nyo Yoon ◽  
Kang Sik Kim ◽  
Ju Hwan Cho ◽  
Weina Ma ◽  
Hye-Jin Choi ◽  
...  

The purpose of the present study was to investigate the role of PLD (phospholipase D) in bFGF (basic fibroblast growth factor)-induced Bcl-2 expression and to examine whether overexpressed Bcl-2 influences neurite outgrowth in immortalized hippocampal progenitor cells (H19-7 cells). We found that Bcl-2 expression was maximally induced by bFGF within 24 h, and that this effect was reduced by inhibiting PLD1 expression with PLD1 small interfering RNA or by overexpressing DN (dominant-negative)-PLD1, whereas PLD1 overexpression markedly induced Bcl-2 expression. bFGF treatment activated Ras, Src, PI3K (phosphoinositide 3-kinase), PLCγ (phospholipase Cγ) and PKCα (protein kinase Cα). Among these molecules, Src and PKCα were not required for Bcl-2 expression. PLD activity was decreased by Ras, PI3K or PLCγ inhibitor, suggesting that PLD1 activation occurred through Ras, PI3K or PLCγ. We found that Ras was the most upstream molecule among these proteins, followed by the PI3K/PLCγ pathway, indicating that bFGF-induced PLD activation took place through the Ras/PI3K/PLCγ pathway. Furthermore, PLD1 was required for activation of JNK (c-Jun N-terminal kinase), which led to activation of STAT3 (signal transducer and activator of transcription 3) and finally Bcl-2 expression. When Bcl-2 was overexpressed, neurite outgrowth was stimulated along with induction of neurotrophic factors such as brain-derived neurotrophic factor and neurotrophin 4/5. In conclusion, PLD1 acts as a downstream effector of bFGF/Ras/PI3K/PLCγ signalling and regulates Bcl-2 expression through JNK/STAT3, which leads to neurite outgrowth in H19-7 cells.


Sign in / Sign up

Export Citation Format

Share Document