scholarly journals The dynein genes of Paramecium tetraurelia: the structure and expression of the ciliary beta and cytoplasmic heavy chains.

1995 ◽  
Vol 6 (11) ◽  
pp. 1549-1562 ◽  
Author(s):  
K A Kandl ◽  
J D Forney ◽  
D J Asai

The genes encoding two Paramecium dynein heavy chains, DHC-6 and DHC-8, have been cloned and sequenced. Sequence-specific antibodies demonstrate that DHC-6 encodes ciliary outer arm beta-chain and DHC-8 encodes a cytoplasmic dynein heavy chain. Therefore, this study is the first opportunity to compare the primary structures and expression of two heavy chains representing the two functional classes of dynein expressed in the same cell. Deciliation of paramecia results in the accumulation of mRNA from DHC-6, but not DHC-8. Nuclear run-on transcription experiments demonstrate that this increase in the steady state concentration of DHC-6 mRNA is a consequence of a rapid induction of transcription in response to deciliation. This is the first demonstration that dynein, like other axonemal components, is transcriptionally regulated during reciliation. Analyses of the sequences of the two Paramecium dyneins and the dynein heavy chains from other organisms indicate that the heavy chain can be divided into three regions: 1) the sequence of the central catalytic domain is conserved among all dyneins; 2) the tail domain sequence, consisting of the N-terminal 1200 residues, differentiates between axonemal and cytoplasmic dyneins; and 3) the N-terminal 200 residues are the most divergent and appear to classify the isoforms. The organization of the heavy chain predicts that the variable tail domain may be sufficient to target the dynein to the appropriate place in the cell.

1994 ◽  
Vol 107 (3) ◽  
pp. 635-644 ◽  
Author(s):  
D.R. Mitchell ◽  
K.S. Brown

We have sequenced genomic clones spanning the complete coding region of one heavy chain (beta) and the catalytic domain of a second (alpha) of the Chlamydomonas reinhardtii flagellar outer arm dynein ATPase. The beta heavy chain gene (ODA-4 locus) spans 20 kb, is divided into at least 30 exons, and encodes a predicted 520 kDa protein. Comparison with sea urchin beta dynein sequences reveals homology that extends throughout both proteins. Over the most conserved central catalytic region, the Chlamydomonas alpha and beta chains are equally divergent from the sea urchin beta chain (64% and 65% similarity, respectively), whereas the Chlamydomonas gamma chain is more divergent from urchin beta (54% similarity). The four glycine-rich loops identified as potential nucleotide-binding sites in other dynein heavy chains are also present in Chlamydomonas alpha and beta dyneins. Two of these four nucleotide-binding motifs are highly conserved among flagellar dyneins, but only the motif previously identified as the catalytic site in sea urchin dynein is highly conserved between flagellar and cytoplasmic dynein heavy chains. Predictions of secondary structure suggest that all dynein heavy chains possess three large domains, with the four nucleotide-binding consensus sequences located in a central 185 kDa domain that is bounded on both sides by regions that form multiple, short alpha-helical coiled-coils.


1998 ◽  
Vol 9 (2) ◽  
pp. 237-247 ◽  
Author(s):  
Peggy S. Criswell ◽  
David J. Asai

Recent studies have revealed the expression of multiple putative cytoplasmic dynein heavy chain (DHC) genes in several organisms, with each gene encoding a separate protein isoform. This finding is consistent with the hypothesis that different isoforms do different things, as is the case for the axonemal dyneins. Furthermore, the large number of tasks ascribed to cytoplasmic dynein suggests that there may be additional isoforms not yet identified. Two of the mammalian cytoplasmic dynein heavy chains are DHC1a and DHC1b. DHC1a is conventional cytoplasmic dynein and is found in all organisms examined. DHC1b is expressed in organisms that have multiple dyneins, and has been implicated in the intracellular trafficking of molecules in unciliated and ciliated cells. In the present study, we examined the DHC1b protein from rat testis. Testis cytoplasmic dynein contains a large amount of dynein heavy chain reactive with an antibody raised against a peptide sequence of rat DHC1b. The testis anti-DHC1b immunoreactive protein is slightly smaller than testis DHC1a, as assessed by SDS-PAGE. In Northern blots, the DHC1b mRNA is smaller than the DHC1a mRNA. In sucrose gradients made in low ionic strength, DHC1a sedimented at approximately 20S, and the anti-1b immunoreactive heavy chains sedimented in a broad band centered at approximately 14S. The V1-photolysis reaction of individual sucrose gradient fractions revealed three distinct patterns of photolysis, suggesting that there are at least three separate 1b-like heavy chain isoforms in testis. Using a high-stringency Western blotting protocol, the anti-1b antibody and the anti-DHC2 antibody recognized the same heavy chain and specifically bound to one of the three 1b-like heavy chains. We conclude that rat testis contains three 1b-like dynein heavy chains, and one of these is the product of the DHC1b/DHC2 gene previously identified.


1994 ◽  
Vol 107 (3) ◽  
pp. 497-506 ◽  
Author(s):  
C.G. Wilkerson ◽  
S.M. King ◽  
G.B. Witman

We report here the complete sequence of the gamma dynein heavy chain of the outer arm of the Chlamydomonas flagellum, and partial sequences for six other dynein heavy chains. The gamma dynein heavy chain sequence contains four P-loop motifs, one of which is the likely hydrolytic site based on its position relative to a previously mapped epitope. Comparison with available cytoplasmic and flagellar dynein heavy chain sequences reveals regions that are highly conserved in all dynein heavy chains sequenced to date, regions that are conserved only among axonemal dynein heavy chains, and regions that are unique to individual dynein heavy chains. The presumed hydrolytic site is absolutely conserved among dyneins, two other P loops are highly conserved among cytoplasmic dynein heavy chains but not in axonemal dynein heavy chains, and the fourth P loop is invariant in axonemal dynein heavy chains but not in cytoplasmic dynein. One region that is very highly conserved in all dynein heavy chains is similar to a portion of the ATP-sensitive microtubule-binding domain of kinesin. Two other regions present in all dynein heavy chains are predicted to have high alpha-helical content and have a high probability of forming coiled-coil structures. Overall, the central one-third of the gamma dynein heavy chain is most conserved whereas the N-terminal one-third is least conserved; the fact that the latter region is divergent between the cytoplasmic dynein heavy chain and two different axonemal dynein heavy chains suggests that it is involved in chain-specific functions.


2009 ◽  
Vol 186 (3) ◽  
pp. 437-446 ◽  
Author(s):  
Khanh Huy Bui ◽  
Hitoshi Sakakibara ◽  
Tandis Movassagh ◽  
Kazuhiro Oiwa ◽  
Takashi Ishikawa

Although the widely shared “9 + 2” structure of axonemes is thought to be highly symmetrical, axonemes show asymmetrical bending during planar and conical motion. In this study, using electron cryotomography and single particle averaging, we demonstrate an asymmetrical molecular arrangement of proteins binding to the nine microtubule doublets in Chlamydomonas reinhardtii flagella. The eight inner arm dynein heavy chains regulate and determine flagellar waveform. Among these, one heavy chain (dynein c) is missing on one microtubule doublet (this doublet also lacks the outer dynein arm), and another dynein heavy chain (dynein b or g) is missing on the adjacent doublet. Some dynein heavy chains either show an abnormal conformation or were replaced by other proteins, possibly minor dyneins. In addition to nexin, there are two additional linkages between specific pairs of doublets. Interestingly, all these exceptional arrangements take place on doublets on opposite sides of the axoneme, suggesting that the transverse functional asymmetry of the axoneme causes an in-plane bending motion.


1994 ◽  
Vol 5 (1) ◽  
pp. 57-70 ◽  
Author(s):  
B H Gibbons ◽  
D J Asai ◽  
W J Tang ◽  
T S Hays ◽  
I R Gibbons

Transcripts approximately 14.5 kilobases in length from 14 different genes that encode for dynein heavy chains have been identified in poly(A)+ RNA from sea urchin embryos. Analysis of the changes in level of these dynein transcripts in response to deciliation, together with their sequence relatedness, suggests that 11 or more of these genes encode dynein isoforms that participate in regeneration of external cilia on the embryo, whereas the single gene whose deduced sequence closely resembles that of cytoplasmic dynein in other organisms appears not to be involved in this regeneration. The four consensus motifs for phosphate binding found previously in the beta heavy chain of sea urchin dynein are present in all five additional isoforms for which extended sequences have been obtained, suggesting that these sites play a significant role in dynein function. Sequence analysis of a approximately 400 amino acid region encompassing the putative hydrolytic ATP-binding site shows that the dynein genes fall into at least six distinct classes. Most of these classes in sea urchin have a high degree of sequence identity with one of the dynein heavy chain genes identified in Drosophila, indicating that the radiation of the dynein gene family into the present classes occurred at an early stage in the evolution of eukaryotes. Evolutionary changes in cytoplasmic dynein have been more constrained than those in the axonemal dyneins.


2019 ◽  
Vol 30 (15) ◽  
pp. 1834-1845 ◽  
Author(s):  
Ramila S. Patel-King ◽  
Miho Sakato-Antoku ◽  
Maya Yankova ◽  
Stephen M. King

WDR92 associates with a prefoldin-like cochaperone complex and known dynein assembly factors. WDR92 has been very highly conserved and has a phylogenetic signature consistent with it playing a role in motile ciliary assembly or activity. Knockdown of WDR92 expression in planaria resulted in ciliary loss, reduced beat frequency and dyskinetic motion of the remaining ventral cilia. We have now identified a Chlamydomonas wdr92 mutant that encodes a protein missing the last four WD repeats. The wdr92-1 mutant builds only ∼0.7-μm cilia lacking both inner and outer dynein arms, but with intact doublet microtubules and central pair. When cytoplasmic extracts prepared by freeze/thaw from a control strain were fractionated by gel filtration, outer arm dynein components were present in several distinct high molecular weight complexes. In contrast, wdr92-1 extracts almost completely lacked all three outer arm heavy chains, while the IFT dynein heavy chain was present in normal amounts. A wdr92-1 tpg1-2 double mutant builds ∼7-μm immotile flaccid cilia that completely lack dynein arms. These data indicate that WDR92 is a key assembly factor specifically required for the stability of axonemal dynein heavy chains in cytoplasm and suggest that cytoplasmic/IFT dynein heavy chains use a distinct folding pathway.


1996 ◽  
Vol 7 (1) ◽  
pp. 71-79 ◽  
Author(s):  
K L Andrews ◽  
P Nettesheim ◽  
D J Asai ◽  
L E Ostrowski

Axonemal dyneins are molecular motors that drive the beating of cilia and flagella. We report here the identification and partial cloning of seven unique axonemal dynein heavy chains from rat tracheal epithelial (RTE) cells. Combinations of axonemal-specific and degenerate primers to conserved regions around the catalytic site of dynein heavy chains were used to obtain cDNA fragments of rat dynein heavy chains. Southern analysis indicates that these are single copy genes, with one possible exception, and Northern analysis of RNA from RTE cells shows a transcript of approximately 15 kb for each gene. Expression of these genes was restricted to tissues containing axonemes (trachea, testis, and brain). A time course analysis during ciliated cell differentiation of RTE cells in culture demonstrated that the expression of axonemal dynein heavy chains correlated with the development of ciliated cells, while cytoplasmic dynein heavy chain expression remained constant. In addition, factors that regulate the development of ciliated cells in culture regulated the expression of axonemal dynein heavy chains in a parallel fashion. These are the first mammalian dynein heavy chain genes shown to be expressed specifically in axonemal tissues. Identification of the mechanisms that regulate the cell-specific expression of these axonemal dynein heavy chains will further our understanding of the process of ciliated cell differentiation.


2004 ◽  
Vol 59 (3) ◽  
pp. 201-214 ◽  
Author(s):  
Siming Liu ◽  
Robert Hard ◽  
Scott Rankin ◽  
Todd Hennessey ◽  
David G. Pennock

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3428
Author(s):  
Julien Ochala ◽  
Carrie J. Finno ◽  
Stephanie J. Valberg

Myosinopathies are defined as a group of muscle disorders characterized by mutations in genes encoding myosin heavy chains. Their exact molecular and cellular mechanisms remain unclear. In the present study, we have focused our attention on a MYH1-related E321G amino acid substitution within the head region of the type IIx skeletal myosin heavy chain, associated with clinical signs of atrophy, inflammation and/or profound rhabdomyolysis, known as equine myosin heavy chain myopathy. We performed Mant-ATP chase experiments together with force measurements on isolated IIx myofibres from control horses (MYH1E321G−/−) and Quarter Horses homozygous (MYH1E321G+/+) or heterozygous (MYH1E321G+/−) for the E321G mutation. The single residue replacement did not affect the relaxed conformations of myosin molecules. Nevertheless, it significantly increased its active behaviour as proven by the higher maximal force production and Ca2+ sensitivity for MYH1E321G+/+ in comparison with MYH1E321G+/− and MYH1E321G−/− horses. Altogether, these findings indicate that, in the presence of the E321G mutation, a molecular and cellular hyper-contractile phenotype occurs which could contribute to the development of the myosin heavy chain myopathy.


1994 ◽  
Vol 107 (4) ◽  
pp. 839-847 ◽  
Author(s):  
D.J. Asai ◽  
S.M. Beckwith ◽  
K.A. Kandl ◽  
H.H. Keating ◽  
H. Tjandra ◽  
...  

Paramecium tetraurelia is a unicellular organism that utilizes both axonemal and cytoplasmic dyneins. The highly conserved region containing the catalytic P-loop of the dynein heavy chain was amplified by RNA-directed polymerase chain reaction. Eight different P-loop-containing cDNA fragments were cloned. Southern hybridization analysis indicated that each fragment corresponds to a separate dynein gene and that there are at least 12 dynein heavy chain genes expressed in Paramecium. Seven of the eight cloned contain sequence motif A, which is found in axonemal dyneins, and one contains sequence motif B, which is found in the dyneins from cell types that do not have cilia or flagella. Two of the Paramecium dynein genes were further investigated: DHC-6 which contains motif A, and DHC-8 which contains motif B. Additional sequencing of the central portions of these genes showed that DHC-6 most closely matches sea urchin ciliary beta heavy chain and DHC-8 is similar to the cytoplasmic dynein from Dictyostelium. Deciliation of the cells resulted in a substantial increase in the steady state concentration of DHC-6 mRNA but only a small change in DHC-8 mRNA. Antisera were produced against synthetic peptides derived from sequence motifs A and B. Competitive solid-phase binding assays demonstrated that each antiserum was peptide-specific. In western blots, the antiserum to motif A reacted with both ciliary and cytoplasmic dyneins. In contrast, the antiserum to motif B reacted with the cytoplasmic dyneins of Paramecium and bovine brain but did not react with ciliary dynein.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document