scholarly journals The N-terminus of fission yeast DNA polymerase alpha contains a basic pentapeptide that acts in vivo as a nuclear localization signal.

1995 ◽  
Vol 6 (12) ◽  
pp. 1697-1705 ◽  
Author(s):  
D Bouvier ◽  
G Baldacci

The N-terminal sequence of the catalytic subunit of fission yeast DNA polymerase alpha (pol alpha) contains two putative nuclear localization signals (NLS). To check the functionality of these signals in vivo, the N-terminal sequence was experimentally divided into three amino acid blocks, two of which contain a distinct presumptive NLS. Each block was deleted, either individually or in combination with one of the two others. The deleted gene products were expressed in fission yeast, and assayed by indirect immunofluorescence for their aptitude to localize to the cell nucleus. Block II, which contains the putative NLS pentapeptide 97RKRKK, was both necessary and sufficient to promote nuclear import of pol alpha, as well as of a pyruvate kinase fusion protein. Precise excision of the NLS pentapeptide from block II inhibited the nuclear import of pol alpha, thus confirming the role of this sequence as the functional NLS of the fission yeast enzyme.

2021 ◽  
Vol 12 ◽  
Author(s):  
Keli Chai ◽  
Zhen Wang ◽  
Qinghua Pan ◽  
Juan Tan ◽  
Wentao Qiao ◽  
...  

Interferon exerts its antiviral activity by stimulating the expression of antiviral proteins. These interferon stimulate genes (ISGs) often target a group of viruses with unique molecular mechanisms. One such ISG is myxovirus resistance B (MxB) that has been reported to inhibit human immunodeficiency virus type 1 (HIV-1) by targeting viral capsid and impairing nuclear import of viral DNA. The antiviral specificity of MxB is determined by its N-terminal 25 amino acids sequence which has the nuclear localization activity, therefore functions as a nuclear localization signal (NLS). In this study, we report that the bipartite NLS, but not the classic NLS, the PY-NLS, nor the arginine-rich NLS, when used to replace the N-terminal sequence of MxB, drastically suppress HIV-1 gene expression and virus production, thus creates a new anti-HIV-1 mechanism. MxB preserves its anti-HIV-1 activity when its N-terminal sequence is replaced by the arginine-rich NLS. Interestingly, the arginine-rich NLS allows MxB to inhibit HIV-1 CA mutants that are otherwise resistant to wild type MxB, which suggests sequence specific targeting of viral capsid. Together, these data implicate that it is not the nuclear import function itself, but rather the sequence and the mechanism of action of the NLS which define the antiviral property of MxB.


2006 ◽  
Vol 175 (4) ◽  
pp. 579-593 ◽  
Author(s):  
Benjamin L. Timney ◽  
Jaclyn Tetenbaum-Novatt ◽  
Diana S. Agate ◽  
Rosemary Williams ◽  
Wenzhu Zhang ◽  
...  

Many cargoes destined for nuclear import carry nuclear localization signals that are recognized by karyopherins (Kaps). We present methods to quantitate import rates and measure Kap and cargo concentrations in single yeast cells in vivo, providing new insights into import kinetics. By systematically manipulating the amounts, types, and affinities of Kaps and cargos, we show that import rates in vivo are simply governed by the concentrations of Kaps and their cargo and the affinity between them. These rates fit to a straightforward pump–leak model for the import process. Unexpectedly, we deduced that the main limiting factor for import is the poor ability of Kaps and cargos to find each other in the cytoplasm in a background of overwhelming nonspecific competition, rather than other more obvious candidates such as the nuclear pore complex and Ran. It is likely that most of every import round is taken up by Kaps and nuclear localization signals sampling other cytoplasmic proteins as they locate each other in the cytoplasm.


2000 ◽  
Vol 20 (21) ◽  
pp. 8185-8197 ◽  
Author(s):  
Manabu Furukawa ◽  
Yanping Zhang ◽  
Joseph McCarville ◽  
Tomohiko Ohta ◽  
Yue Xiong

ABSTRACT Members of the cullin and RING finger ROC protein families form heterodimeric complexes to constitute a potentially large number of distinct E3 ubiquitin ligases. We report here that the highly conserved C-terminal sequence in CUL1 is dually required, both for nuclear localization and for modification by NEDD8. Disruption of ROC1 binding impaired nuclear accumulation of CUL1 and decreased NEDD8 modification in vivo but had no effect on NEDD8 modification of CUL1 in vitro, suggesting that ROC1 promotes CUL1 nuclear accumulation to facilitate its NEDD8 modification. Disruption of NEDD8 binding had no effect on ROC1 binding, nor did it affect nuclear localization of CUL1, suggesting that nuclear localization and NEDD8 modification of CUL1 are two separable steps, with nuclear import preceding and required for NEDD8 modification. Disrupting NEDD8 modification diminishes the IκBα ubiquitin ligase activity of CUL1. These results identify a pathway for regulation of CUL1 activity—ROC1 and the CUL1 C-terminal sequence collaboratively mediate nuclear accumulation and NEDD8 modification, facilitating assembly of active CUL1 ubiquitin ligase. This pathway may be commonly utilized for the assembly of other cullin ligases.


Biochemistry ◽  
2008 ◽  
Vol 47 (52) ◽  
pp. 13764-13777 ◽  
Author(s):  
Gualtiero Alvisi ◽  
Simone Avanzi ◽  
Daniele Musiani ◽  
Daria Camozzi ◽  
Valerio Leoni ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Joseph M. Kelich ◽  
Harry Papaioannou ◽  
Emmanuel Skordalakes

AbstractThe human CST complex composed of CTC1, STN1, and TEN1 is critically involved in telomere maintenance and homeostasis. Specifically, CST terminates telomere extension by inhibiting telomerase access to the telomeric overhang and facilitates lagging strand fill in by recruiting DNA Polymerase alpha primase (Pol α-primase) to the telomeric C-strand. Here we reveal that CST has a dynamic intracellular localization that is cell cycle dependent. We report an increase in nuclear CST several hours after the initiation of DNA replication, followed by exit from the nucleus prior to mitosis. We identify amino acids of CTC1 involved in Pol α-primase binding and nuclear localization. We conclude, the CST complex does not contain a nuclear localization signal (NLS) and suggest that its nuclear localization is reliant on Pol α-primase. Hypomorphic mutations affecting CST nuclear import are associated with telomere syndromes and cancer, emphasizing the important role of this process in health.


1992 ◽  
Vol 118 (5) ◽  
pp. 991-1002 ◽  
Author(s):  
D M Standiford ◽  
J D Richter

The 289 residue nuclear oncoprotein encoded by the adenovirus 5 Ela gene contains two peptide sequences that behave as nuclear localization signals (NLS). One signal, located at the carboxy terminus, is like many other known NLSs in that it consists of a short stretch of basic residues (KRPRP) and is constitutively active in cells. The second signal resides within an internal 45 residue region of E1a that contains few basic residues or sequences that resemble other known NLSs. Moreover, this internal signal functions in injected Xenopus oocytes, but not in transfected Xenopus A6 cells, suggesting that it could be regulated developmentally (Slavicek et al. 1989. J. Virol. 63:4047). In this study, we show that the activity of this signal is sensitive to ATP depletion in vivo, efficiently directs the import of a 50 kD fusion protein and can compete with the E1a carboxy-terminal NLS for nuclear import. In addition, we have delineated the precise amino acid residues that comprise the second E1a NLS, and have assessed its utilization during Xenopus embryogenesis. Using amino acid deletion and substitution analyses, we show that the signal consists of the sequence FV(X)7-20MXSLXYM(X)4MF. By expressing in Xenopus embryos a truncated E1a protein that contains only the second NLS and by monitoring its cytoplasmic/nuclear distribution during development with indirect immunofluorescence, we find that the second NLS is utilized up to the early neurula stage. In addition, there appears to be a hierarchy among the embryonic germ layers as to when the second NLS becomes nonfunctional. For this reason, we refer to this NLS as the developmentally regulated nuclear localization signal (drNLS). The implications of these findings for early development are discussed.


1998 ◽  
Vol 143 (4) ◽  
pp. 887-899 ◽  
Author(s):  
Jonathan S. Rosenblum ◽  
Lucy F. Pemberton ◽  
Neris Bonifaci ◽  
Günter Blobel

La (SS-B) is a highly expressed protein that is able to bind 3′-oligouridylate and other common RNA sequence/structural motifs. By virtue of these interactions, La is present in a myriad of nuclear and cytoplasmic ribonucleoprotein complexes in vivo where it may function as an RNA-folding protein or RNA chaperone. We have recently characterized the nuclear import pathway of the S. cerevisiae La, Lhp1p. The soluble transport factor, or karyopherin, that mediates the import of Lhp1p is Kap108p/Sxm1p. We have now determined a 113-amino acid domain of Lhp1p that is brought to the nucleus by Kap108p. Unexpectedly, this domain does not coincide with the previously identified nuclear localization signal of human La. Furthermore, when expressed in Saccharomyces cerevisiae, the nuclear localization of Schizosaccharomyces pombe, Drosophila, and human La proteins are independent of Kap108p. We have been able to reconstitute the nuclear import of human La into permeabilized HeLa cells using the recombinant human factors karyopherin α2, karyopherin β1, Ran, and p10. As such, the yeast and human La proteins are imported using different sequence motifs and dissimilar karyopherins. Our results are consistent with an intermingling of the nuclear import and evolution of La.


2020 ◽  
Author(s):  
Linjiang Yang ◽  
Xixia Hu ◽  
Anchun Cheng ◽  
Mingshu Wang ◽  
Renyong Jia ◽  
...  

Abstract Background UL13 multifunctional tegument protein duck enteritis virus (DEV) is predicted as conserved herpesvirus protein kinase (CHPK); however, little is known about its subcellular localization signal. Results In this study, by transfection with two predicted nuclear signals of DEV UL13 fused to enhanced green fluorescent protein (EGFP), two bipartite nuclear localization signals (NLS) were identified. We found that the NLSs block its nuclear import using ivermectin and proved that nuclear localization signal of DEV UL13 is a classical importin α/β-dependent process. And we constructed the DEV UL13 mutant strain, with the NLSs of DEV UL13 deleted, to explore whether it can affect the virus replication Conclusions The DEV pUL13 amino acids 4 to 7 and 90 to 96 was predicted, and proved that this nuclear import occurs via the classical importin α/β-dependent process. We also found NLSs of pUL13 have no effect on DEV replication in cell culture. Our study enhances the understanding of DEV pUL13. Taken together, these results would provide significant information for the biological function of pUL13 during DEV infection.


2001 ◽  
Vol 114 (1) ◽  
pp. 89-99
Author(s):  
J. Bertinato ◽  
C. Schild-Poulter ◽  
R.J. Hache

The Ku antigen is a heteromeric (Ku70/Ku80), mostly nuclear protein. Ku participates in multiple nuclear processes from DNA repair to V(D)J recombination to telomere maintenance to transcriptional regulation and serves as a DNA binding subunit and allosteric regulator of DNA-dependent protein kinase. While some evidence suggests that subcellular localization of Ku may be subject to regulation, how Ku gains access to the nucleus is poorly understood. In this work, using a combination of indirect immunofluorescence and direct fluorescence, we have demonstrated that transfer of the Ku heterodimer to the nucleus is determined by basic nuclear localization signals in each of the Ku subunits that function independently. A bipartite basic nuclear localization signal between amino acids 539–556 of Ku70 was observed to be required for nuclear import of full-length Ku70 monomer, while a short Ku80 motif of four amino acids from 565–568 containing three lysines was required for the nuclear import of full-length Ku80. Ku heterodimers containing only one nuclear localization signal accumulated in the nucleus as efficiently as wild-type Ku, while site directed mutagenesis inactivating the basic motifs in each subunit, resulted in a Ku heterodimer that was completely localized to the cytoplasm. Lastly, our results indicate that mutations in Ku previously proposed to abrogate Ku70/Ku80 heterodimerization, markedly reduced the accumulation of Ku70 without affecting heterodimer formation in mammalian cells.


2013 ◽  
Vol 94 (6) ◽  
pp. 1335-1342 ◽  
Author(s):  
Qian Li ◽  
Zhenfeng Zhang ◽  
Zhenhua Zheng ◽  
Xianliang Ke ◽  
Huanle Luo ◽  
...  

Human bocavirus (HBoV), closely related to canine minute virus (MVC) and bovine parvovirus (BPV), is a new member of the Bocavirus genus within the Parvoviridae family. The non-structural protein NP1 of HBoV is a nuclear localized protein and plays an important role in DNA replication as well as in the evasion of host innate immunity. In the current study, we provide the first evidence that NP1 possesses a non-classical nuclear localization signal (ncNLS) (amino acids 7–50). Embedded within this ncNLS is a classical bipartite nuclear localization signal (cNLS) (amino acids 14–28), capable of transporting a heterologous cytoplasmic protein β-galactosidase fusion protein (β-gal-EGFP) to the nucleus via the classical importin α/β1-mediated pathway. Amino acids 7–50 containing the cNLS and the ncNLS of NP1 or full-length NP1 interact with importin α1, importin β1 and importin β1Δ, which lacks the importin α binding domain, indicating that the nuclear import of NP1 is through both conventional importin α/β1 heterodimer- and non-classical importinß1-mediated pathways. Given that the arrangement of a cNLS embedded within an ncNLS is unusual in viral proteins, our data together reveal a novel molecular mechanism underlying the nuclear import of HBoV NP1, providing a basis for further understanding its biological function.


Sign in / Sign up

Export Citation Format

Share Document