scholarly journals The CUL1 C-Terminal Sequence and ROC1 Are Required for Efficient Nuclear Accumulation, NEDD8 Modification, and Ubiquitin Ligase Activity of CUL1

2000 ◽  
Vol 20 (21) ◽  
pp. 8185-8197 ◽  
Author(s):  
Manabu Furukawa ◽  
Yanping Zhang ◽  
Joseph McCarville ◽  
Tomohiko Ohta ◽  
Yue Xiong

ABSTRACT Members of the cullin and RING finger ROC protein families form heterodimeric complexes to constitute a potentially large number of distinct E3 ubiquitin ligases. We report here that the highly conserved C-terminal sequence in CUL1 is dually required, both for nuclear localization and for modification by NEDD8. Disruption of ROC1 binding impaired nuclear accumulation of CUL1 and decreased NEDD8 modification in vivo but had no effect on NEDD8 modification of CUL1 in vitro, suggesting that ROC1 promotes CUL1 nuclear accumulation to facilitate its NEDD8 modification. Disruption of NEDD8 binding had no effect on ROC1 binding, nor did it affect nuclear localization of CUL1, suggesting that nuclear localization and NEDD8 modification of CUL1 are two separable steps, with nuclear import preceding and required for NEDD8 modification. Disrupting NEDD8 modification diminishes the IκBα ubiquitin ligase activity of CUL1. These results identify a pathway for regulation of CUL1 activity—ROC1 and the CUL1 C-terminal sequence collaboratively mediate nuclear accumulation and NEDD8 modification, facilitating assembly of active CUL1 ubiquitin ligase. This pathway may be commonly utilized for the assembly of other cullin ligases.

2004 ◽  
Vol 24 (6) ◽  
pp. 2526-2535 ◽  
Author(s):  
Elisabetta Citterio ◽  
Roberto Papait ◽  
Francesco Nicassio ◽  
Manuela Vecchi ◽  
Paola Gomiero ◽  
...  

ABSTRACT Np95 is an important determinant in cell cycle progression. Its expression is tightly regulated and becomes detectable shortly before the entry of cells into S phase. Accordingly, Np95 is absolutely required for the G1/S transition. Its continued expression throughout the S/G2/M phases further suggests additional roles. Indeed, Np95 has been implicated in DNA damage response. Here, we show that Np95 is tightly bound to chromatin in vivo and that it binds to histones in vivo and in vitro. The binding to histones is direct and shows a remarkable preference for histone H3 and its N-terminal tail. A novel protein domain, the SRA-YDG domain, contained in Np95 is indispensable both for the interaction with histones and for chromatin binding in vivo. Np95 contains a RING finger. We show that this domain confers E3 ubiquitin ligase activity on Np95, which is specific for core histones, in vitro. Finally, Np95 shows specific E3 activity for histone H3 when the endogenous core octamer, coimmunoprecipitating with Np95, is used as a substrate. Histone ubiquitination is an important determinant in the regulation of chromatin structure and gene transcription. Thus, the demonstration that Np95 is a chromatin-associated ubiquitin ligase suggests possible molecular mechanisms for its action as a cell cycle regulator.


2007 ◽  
Vol 18 (5) ◽  
pp. 1670-1682 ◽  
Author(s):  
Mikael Lerner ◽  
Martin Corcoran ◽  
Diana Cepeda ◽  
Michael L. Nielsen ◽  
Roman Zubarev ◽  
...  

RFP2, a gene frequently lost in various malignancies, encodes a protein with RING finger, B-box, and coiled-coil domains that belongs to the RBCC/TRIM family of proteins. Here we demonstrate that Rfp2 is an unstable protein with auto-polyubiquitination activity in vivo and in vitro, implying that Rfp2 acts as a RING E3 ubiquitin ligase. Consequently, Rfp2 ubiquitin ligase activity is dependent on an intact RING domain, as RING deficient mutants fail to drive polyubiquitination in vitro and are stabilized in vivo. Immunopurification and tandem mass spectrometry enabled the identification of several putative Rfp2 interacting proteins localized to the endoplasmic reticulum (ER), including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). Importantly, we also show that Rfp2 regulates the degradation of the known ER proteolytic substrate CD3-δ, but not the N-end rule substrate Ub-R-YFP (yellow fluorescent protein), establishing Rfp2 as a novel E3 ligase involved in ERAD. Finally, we show that Rfp2 contains a C-terminal transmembrane domain indispensable for its localization to the ER and that Rfp2 colocalizes with several ER-resident proteins as analyzed by high-resolution immunostaining. In summary, these data are all consistent with a function for Rfp2 as an ERAD E3 ubiquitin ligase.


2005 ◽  
Vol 17 (9) ◽  
pp. 64
Author(s):  
D. A. Jans ◽  
G. Kaur ◽  
I. K. H. Poon ◽  
A. Delluc-Clavieries ◽  
K. M. Wagstaff

15% of cases of human XY sex reversal are due to mutations in SRY (sex determining region on the Y chromosome), many of which map to one of SRY’s two independently acting nuclear localization signals (NLSs) flanking its DNA binding domain. The C-terminal NLS (C-NLS) targets SRY to the nucleus through a ‘conventional’ pathway dependent on the nuclear import receptor importin-β (Imp-β). No importin has been shown to bind the N-terminal NLS (N-NLS), but it is known to interact with the Ca2+-binding protein calmodulin (CaM). We examined seven distinct missense mutations in the SRY NLSs from XY sex-reversed human females for effects on nuclear import and ability to interact with CaM/Imp-β1. All mutations were found to result in reduced nuclear localization in transfected testicular cells compared to wild type. The CaM antagonist, calmidazolium chloride (CDZ), was found to significantly reduce SRY nuclear accumulation, indicating a dependence of SRY nuclear import on CaM. Intriguingly, N-NLS mutants were resistant to CDZ’s effects, implying a loss of interaction with CaM; this was confirmed directly by in vitro binding experiments using recombinantly expressed protein. Either impaired CaM or Imp-β1 binding can thus be the basis of sex-reversal in human patients. Our results implicate a CaM-dependent nuclear import pathway for SRY mediated by the N-NLS that, together with the C-NLS, is required to achieve threshold levels of SRY in the nucleus for male sex determination.


2002 ◽  
Vol 22 (6) ◽  
pp. 1947-1960 ◽  
Author(s):  
William J. Hansen ◽  
Michael Ohh ◽  
Javid Moslehi ◽  
Keiichi Kondo ◽  
William G. Kaelin ◽  
...  

ABSTRACT We examined the biogenesis of the von Hippel-Lindau (VHL) tumor suppressor protein (pVHL) in vitro and in vivo. pVHL formed a complex with the cytosolic chaperonin containing TCP-1 (CCT or TRiC) en route to assembly with elongin B/C and the subsequent formation of the VCB-Cul2 ubiquitin ligase. Blocking the interaction of pVHL with elongin B/C resulted in accumulation of pVHL within the CCT complex. pVHL present in purified VHL-CCT complexes, when added to rabbit reticulocyte lysate, proceeded to form VCB and VCB-Cul2. Thus, CCT likely functions, at least in part, by retaining VHL chains pending the availability of elongin B/C for final folding and/or assembly. Tumor-associated mutations within exon II of the VHL syndrome had diverse effects upon the stability and/or function of pVHL-containing complexes. First, a pVHL mutant lacking the entire region encoded by exon II did not bind to CCT and yet could still assemble into complexes with elongin B/C and elongin B/C-Cul2. Second, a number of tumor-derived missense mutations in exon II did not decrease CCT binding, and most had no detectable effect upon VCB-Cul2 assembly. Many exon II mutants, however, were found to be defective in the binding to and subsequent ubiquitination of hypoxia-inducible factor 1α (HIF-1α), a substrate of the VCB-Cul2 ubiquitin ligase. We conclude that the selection pressure to mutate VHL exon II during tumorigenesis does not relate to loss of CCT binding but may reflect quantitative or qualitative defects in HIF binding and/or in pVHL-dependent ubiquitin ligase activity.


Author(s):  
Zachary T Hilt ◽  
Preeti Maurya ◽  
Laura Tesoro ◽  
Daphne N Pariser ◽  
Sara K Ture ◽  
...  

Rationale: Circulating monocytes can have pro-inflammatory or pro-reparative phenotypes. The endogenous signaling molecules and pathways that regulate monocyte polarization in vivo are poorly understood. We have shown that platelet derived beta-2 microglobulin (β2M) and transforming growth factor beta (TGFβ) have opposing effects on monocytes by inducing inflammatory and reparative phenotypes respectively, but each bind and signal through the same receptor. We now define the signaling pathways involved. Objective: To determine the molecular mechanisms and signal transduction pathways by which β2M and TGFβ regulate monocyte responses both in vitro and in vivo. Methods and Results: Wild-type (WT) and platelet specific β2M knockout (Plt-β2M -/- ) mice were treated intravenously with either β2M or TGFβ to increase plasma concentrations to those in cardiovascular diseases. Elevated plasma β2M increased pro-inflammatory monocytes, while increased plasma TGFβ increased pro-reparative monocytes. TGFβ receptor (TGFβR) inhibition blunted monocyte responses to both β2M and TGFβ in vivo. Using imaging flow cytometry, we found that β2M decreased monocyte SMAD2/3 nuclear localization, while TGFβ promoted SMAD nuclear translocation, but decreased non-canonical/inflammatory (JNK and NFκB nuclear localization). This was confirmed in vitro using both imaging flow cytometry and immunoblots. β2M, but not TGFβ, promoted ubiquitination of SMAD3 and SMAD4, that inhibited their nuclear trafficking. Inhibition of ubiquitin ligase activity blocked non-canonical SMAD-independent monocyte signaling and skewed monocytes towards a pro-reparative monocyte response. Conclusions: Our findings indicate that elevated plasma β2M and TGFβ dichotomously polarize monocytes. Furthermore, these immune molecules share a common receptor, but induce SMAD-dependent canonical signaling (TGFβ) versus non-canonical SMAD-independent signaling (β2M) in a ubiquitin ligase dependent manner. This work has broad implications as β2M is increased in several inflammatory conditions, while TGFβ is increased in fibrotic diseases.


2000 ◽  
Vol 11 (7) ◽  
pp. 2315-2325 ◽  
Author(s):  
Joel D. Leverson ◽  
Claudio A.P. Joazeiro ◽  
Andrew M. Page ◽  
Han-kuei Huang ◽  
Philip Hieter ◽  
...  

Polyubiquitination marks proteins for degradation by the 26S proteasome and is carried out by a cascade of enzymes that includes ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), and ubiquitin ligases (E3s). The anaphase-promoting complex or cyclosome (APC/C) comprises a multisubunit ubiquitin ligase that mediates mitotic progression. Here, we provide evidence that theSaccharomyces cerevisiae RING-H2 finger protein Apc11 defines the minimal ubiquitin ligase activity of the APC. We found that the integrity of the Apc11p RING-H2 finger was essential for budding yeast cell viability, Using purified, recombinant proteins we showed that Apc11p interacted directly with the Ubc4 ubiquitin conjugating enzyme (E2). Furthermore, purified Apc11p was capable of mediating E1- and E2-dependent ubiquitination of protein substrates, including Clb2p, in vitro. The ability of Apc11p to act as an E3 was dependent on the integrity of the RING-H2 finger, but did not require the presence of the cullin-like APC subunit Apc2p. We suggest that Apc11p is responsible for recruiting E2s to the APC and for mediating the subsequent transfer of ubiquitin to APC substrates in vivo.


1995 ◽  
Vol 130 (2) ◽  
pp. 255-263 ◽  
Author(s):  
T Tagawa ◽  
T Kuroki ◽  
P K Vogt ◽  
K Chida

Cell cycle-dependent phosphorylation and nuclear import of the tumorigenic transcription factor viral Jun (v-Jun) were investigated in chicken embryo fibroblasts. Nuclear accumulation of v-Jun but not of cellular Jun (c-Jun) is cell cycle dependent, decreasing in G1 and increasing in G2. The cell cycle-dependent regulation of v-Jun was mapped to a single serine residue at position 248 (Ser248), adjacent to the nuclear localization signal (NLS). Ser248 of v-Jun represents an amino acid substitution, replacing cysteine of c-Jun. It was shown by peptidase digestion and immunoprecipitation with antibody to the NLS that v-Jun is phosphorylated at Ser248 in the cytoplasm but not in the nucleus. This phosphorylation is high in G1 and low in G2. Nuclear accumulation of v-Jun is correlated with underphosphorylation at Ser248. The regulation of nuclear import by phosphorylation was also examined using NLS peptides with Ser248 of v-Jun. Phosphorylation of the serine inhibited nuclear import mediated by the NLS peptide in vivo and in vitro. The protein kinase inhibitors staurosporine and H7 stimulated but the phosphatase inhibitor okadaic acid inhibited nuclear import mediated by the NLS peptide. The cytosolic activity of protein kinases phosphorylating Ser248 increased in G0 and decreased during cell cycle progression, reaching a minimum in G2, whereas phosphatase activity dephosphorylating Ser248 was not changed. These results show that nuclear import of v-Jun is negatively regulated by phosphorylation at Ser248 in the cytoplasm in a cell cycle-dependent manner.


2008 ◽  
Vol 19 (8) ◽  
pp. 3323-3333 ◽  
Author(s):  
Olivier Santt ◽  
Thorsten Pfirrmann ◽  
Bernhard Braun ◽  
Jeannette Juretschke ◽  
Philipp Kimmig ◽  
...  

Glucose-dependent regulation of carbon metabolism is a subject of intensive studies. We have previously shown that the switch from gluconeogenesis to glycolysis is associated with ubiquitin-proteasome linked elimination of the key enzyme fructose-1,6-bisphosphatase. Seven glucose induced degradation deficient (Gid)-proteins found previously in a genomic screen were shown to form a complex that binds FBPase. One of the subunits, Gid2/Rmd5, contains a degenerated RING finger domain. In an in vitro assay, heterologous expression of GST-Gid2 leads to polyubiquitination of proteins. In addition, we show that a mutation in the degenerated RING domain of Gid2/Rmd5 abolishes fructose-1,6-bisphosphatase polyubiquitination and elimination in vivo. Six Gid proteins are present in gluconeogenic cells. A seventh protein, Gid4/Vid24, occurs upon glucose addition to gluconeogenic cells and is afterwards eliminated. Forcing abnormal expression of Gid4/Vid24 in gluconeogenic cells leads to fructose-1,6-bisphosphatase degradation. This suggests that Gid4/Vid24 initiates fructose-1,6-bisphosphatase polyubiquitination by the Gid complex and its subsequent elimination by the proteasome. We also show that an additional gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, is subject to Gid complex-dependent degradation. Our study uncovers a new type of ubiquitin ligase complex composed of novel subunits involved in carbohydrate metabolism and identifies Gid4/Vid24 as a major regulator of this E3.


2004 ◽  
Vol 24 (19) ◽  
pp. 8477-8486 ◽  
Author(s):  
Sara B. Cullinan ◽  
John D. Gordan ◽  
Jianping Jin ◽  
J. Wade Harper ◽  
J. Alan Diehl

ABSTRACT The Nrf2 transcription factor promotes survival following cellular insults that trigger oxidative damage. Nrf2 activity is opposed by the BTB/POZ domain protein Keap1. Keap1 is proposed to regulate Nrf2 activity strictly through its capacity to inhibit Nrf2 nuclear import. Recent work suggests that inhibition of Nrf2 may also depend upon ubiquitin-mediated proteolysis. To address the contribution of Keap1-dependent sequestration versus Nrf2 proteolysis, we identified the E3 ligase that regulates Nrf2 ubiquitination. We demonstrate that Keap1 is not solely a cytosolic anchor; rather, Keap1 is an adaptor that bridges Nrf2 to Cul3. We demonstrate that Cul3-Keap1 complexes regulate Nrf2 polyubiquitination both in vitro and in vivo. Inhibition of either Keap1 or Cul3 increases Nrf2 nuclear accumulation, leading to promiscuous activation of Nrf2-dependent gene expression. Our data demonstrate that Keap1 restrains Nrf2 activity via its capacity to target Nrf2 to a cytoplasmic Cul3-based E3 ligase and suggest a model in which Keap1 coordinately regulates both Nrf2 accumulation and access to target genes.


2019 ◽  
Vol 93 (23) ◽  
Author(s):  
Dan Li ◽  
Wenping Yang ◽  
Jingjing Ren ◽  
Yi Ru ◽  
Keshan Zhang ◽  
...  

ABSTRACT TANK-binding kinase 1 (TBK1) is essential for interferon beta (IFN-β) production and innate antiviral immunity. However, other, additional functions of TBK1 have remained elusive. Here, we showed that TBK1 is an E3 ubiquitin ligase that undergoes self-ubiquitylation in vitro in the presence of the E2 enzyme UbcH5c. Further evidence showed that TBK1 could also be self-ubiquitylated in vivo. Importantly, multiple picornavirus VP3 proteins were degraded by TBK1 through its kinase and E3 ubiquitin ligase activity. Mechanistically, TBK1 phosphorylated multiple picornavirus VP3 proteins at serine residues and ubiquitinated them via K63-linked ubiquitination at lysine residues. In addition, the C426 and C605 residues of TBK1 were not essential for TBK1 innate immunity activity; however, these residues were required for degradation of multiple picornavirus VP3 proteins and for its E3 ubiquitin ligase activity. Hence, our findings identified a novel role of TBK1 in regulating the virus life cycle and provided new insights into the molecular mechanisms of TBK1-mediated antiviral response. IMPORTANCE TBK1 is an important adaptor protein required for innate immune response to viruses, but its other functions were unknown. In this study, we found that TBK1 is an E3 ubiquitin ligase that undergoes self-ubiquitylation in vitro in the presence of the E2 enzyme UbcH5c. In addition, multiple picornavirus VP3 proteins were degraded by TBK1 through its kinase and E3 ubiquitin ligase activity. Our report provides evidence that TBK1 plays a role in viral protein degradation.


Sign in / Sign up

Export Citation Format

Share Document