scholarly journals Tumor Necrosis Factor-α Stimulates the Epithelial-to-Mesenchymal Transition of Human Colonic Organoids

2003 ◽  
Vol 14 (5) ◽  
pp. 1790-1800 ◽  
Author(s):  
Richard C. Bates ◽  
Arthur M. Mercurio

An epithelial-mesenchymal transition (EMT) characterizes the progression of many carcinomas and it is linked to the acquisition of an invasive phenotype. Given that the tumor microenvironment is an active participant in tumor progression, an important issue is whether a reactive stroma can modulate this process. Using a novel EMT model of colon carcinoma spheroids, we demonstrate that their transforming-growth factor-β1 (TGF-β)-induced EMT is accelerated dramatically by the presence of activated macrophages, and we identify tumor necrosis factor-α (TNF-α) as the critical factor produced by macrophages that accelerates the EMT. A synergy of TNF-α and TGF-β signaling promotes a rapid morphological conversion of the highly organized colonic epithelium to dispersed cells with a mesenchymal phenotype, and this process is dependent on enhanced p38 MAPK activity. Moreover, exposure to TNF-α stimulates a rapid burst of ERK activation that results in the autocrine production of this cytokine by the tumor cells themselves. These results establish a novel role for the stroma in influencing EMT in colon carcinoma, and they identify a selective advantage to the stromal presence of infiltrating leukocytes in regulating malignant tumor progression.

2012 ◽  
Vol 29 (5) ◽  
pp. 3083-3091 ◽  
Author(s):  
Anchalee Techasen ◽  
Nisana Namwat ◽  
Watcharin Loilome ◽  
Pornpan Bungkanjana ◽  
Narong Khuntikeo ◽  
...  

2019 ◽  
Vol 88 ◽  
pp. 149-150 ◽  
Author(s):  
Erkoseoglu Ilknur ◽  
Kadioglu Mine ◽  
Cavusoglu Irem ◽  
Sisman Mulkiye ◽  
Aran Turhan ◽  
...  

2017 ◽  
Vol 9 ◽  
pp. 117957351770927 ◽  
Author(s):  
Rudy Chang ◽  
Kei-Lwun Yee ◽  
Rachita K Sumbria

Tumor necrosis factor α (TNF-α) plays a central role in the pathophysiology of Alzheimer’s disease (AD). Food and Drug Administration–approved biologic TNF-α inhibitors are thus a potential treatment for AD, but they do not cross the blood-brain barrier. In this short review, we discuss the involvement of TNF-α in AD, challenges associated with the development of existing biologic TNF-α inhibitors for AD, and potential therapeutic strategies for targeting TNF-α for AD therapy.


2002 ◽  
Vol 283 (4) ◽  
pp. G947-G956 ◽  
Author(s):  
Nathan W. Werneburg ◽  
M. Eugenia Guicciardi ◽  
Steven F. Bronk ◽  
Gregory J. Gores

Cathepsin B (Cat B) is released from lysososomes during tumor necrosis factor-α (TNF-α) cytotoxic signaling in hepatocytes and contributes to cell death. Sphingosine has recently been implicated in lysosomal permeabilization and is increased in the liver by TNF-α. Thus the aims of this study were to examine the mechanisms involved in TNF-α-associated lysosomal permeabilization, especially the role of sphingosine. Confocal microscopy demonstrated Cat B-green fluorescent protein and LysoTracker Red were both released from lysosomes after treatment of McNtcp.24 cells with TNF-α/actinomycin D, a finding compatible with lysosomal destabilization. In contrast, endosomes labeled with Texas Red dextran remained intact, suggesting lysosomes were specifically targeted for permeabilization. LysoTracker Red was released from lysosomes in hepatocytes treated with TNF-α or sphingosine in Cat B(+/+) but not Cat B(−/−) hepatocytes, as assessed by a fluorescence-based assay. With the use of a calcein release assay in isolated lysosomes, sphingosine permeabilized liver lysosomes isolated from Cat B(+/+) but not Cat B(−/−) liver. C6ceramide did not permeabilize lysosomes. In conclusion, these data implicate a sphingosine-Cat B interaction inducing lysosomal destabilization during TNF-α cytotoxic signaling.


2009 ◽  
Vol 36 (4) ◽  
pp. 837-842 ◽  
Author(s):  
ANA FILIPA MOURÃO ◽  
JOANA CAETANO-LOPES ◽  
PAULA COSTA ◽  
HELENA CANHÃO ◽  
MARIA JOSÉ SANTOS ◽  
...  

Objective.Considering the relevance of tumor necrosis factor-α (TNF-α) in the pathophysiology of juvenile idiopathic arthritis (JIA), it is likely that polymorphisms in its promoter area may be relevant in disease susceptibility and activity. We investigated if clinical measures of JIA activity and TNF-α serum concentrations were associated with TNF-α −308 genotypes.Methods.Portuguese patients with JIA in 5 pediatric rheumatology centers were recruited consecutively, along with a control group of healthy subjects. Demographic and clinical data and blood samples were collected from each patient. DNA was extracted for analysis of TNF-α gene promoter polymorphisms at position −308 by restriction fragment-length polymorphism.Results.One hundred fourteen patients and 117 controls were evaluated; 57% of patients presented the oligoarticular subtype, 25% the polyarticular subtype, 8% the systemic subtype, and 9% had enthesitis-related arthritis and 5% psoriatic arthritis. Twenty-four percent of the patients presented the −308 GA/AA genotypes and 76% the −308 GG genotype, similar to findings in controls. Patients with the −308 GA/AA genotype had higher degree of functional impairment, erythrocyte sedimentation rate, 100-mm visual analog scale score for disease activity, and TNF-α levels compared to those with the −308 GG genotype.Conclusion.TNF-α −308 GA/AA genotypes were found to be related to higher inflammatory activity and worse measures of disease activity in Portuguese patients with JIA. They were not associated with susceptibility to JIA.


2008 ◽  
Vol 19 (3) ◽  
pp. 855-864 ◽  
Author(s):  
Yoshinori Takei ◽  
Ronald Laskey

Although nerve growth factor (NGF) promotes survival of neurons, tumor necrosis factor α (TNF-α) contributes to cell death triggered by NGF depletion, through TNF-α receptor (TNFR) 1. In contrast to this effect, TNF-α can promote neural cell survival via TNF-α receptor TNFR2. Although these findings demonstrate pivotal roles of TNF-α and NGF in cell fate decisions, cross-talk between these signaling pathways has not been clarified. We find that NGF can induce TNF-α synthesis through the nuclear factor-κB transcription factor. This provides a new basis for examining the cross-talk between NGF and TNF-α. Inhibition of TNFR2 shows opposite effects on two downstream kinases of NGF, extracellular signal-regulated kinase (Erk) and Akt. It increases Erk activation by NGF, and this increased activation induces differentiation of neuroblastoma cell lines. Reciprocally, inhibition of TNFR2 decreases Akt activation by NGF. Consistent with an essential role of Akt in survival signaling, inhibition of TNF-α signaling decreases NGF-dependent survival of neurons from rat dorsal root ganglia. Thus, NGF and NGF-induced TNF-α cooperate to activate Akt, promoting survival of normal neural cells. However, the NGF-induced TNF-α suppresses Erk activation by NGF, blocking NGF-induced differentiation of neuroblastoma cells. TNFR2 signaling could be a novel target to modulate cell responses to NGF.


Sign in / Sign up

Export Citation Format

Share Document