scholarly journals γ-Tubulin Plays an Essential Role in the Coordination of Mitotic Events

2004 ◽  
Vol 15 (3) ◽  
pp. 1374-1386 ◽  
Author(s):  
Natalie L. Prigozhina ◽  
C. Elizabeth Oakley ◽  
Amanda M. Lewis ◽  
Tania Nayak ◽  
Stephen A. Osmani ◽  
...  

Recent data from multiple organisms indicate that γ-tubulin has essential, but incompletely defined, functions in addition to nucleating microtubule assembly. To investigate these functions, we examined the phenotype of mipAD159, a cold-sensitive allele of the γ-tubulin gene of Aspergillus nidulans. Immunofluorescence microscopy of synchronized material revealed that at a restrictive temperature mipAD159 does not inhibit mitotic spindle formation. Anaphase A was inhibited in many nuclei, however, and after a slight delay in mitosis (∼6% of the cell cycle period), most nuclei reentered interphase without dividing. In vivo observations of chromosomes at a restrictive temperature revealed that mipAD159 caused a failure of the coordination of late mitotic events (anaphase A, anaphase B, and chromosomal disjunction) and nuclei reentered interphase quickly even though mitosis was not completed successfully. Time-lapse microscopy also revealed that transient mitotic spindle abnormalities, in particular bent spindles, were more prevalent in mipAD159 strains than in controls. In experiments in which microtubules were depolymerized with benomyl, mipAD159 nuclei exited mitosis significantly more quickly (as judged by chromosomal condensation) than nuclei in a control strain. These data reveal that γ-tubulin has an essential role in the coordination of late mitotic events, and a microtubule-independent function in mitotic checkpoint control.

2001 ◽  
Vol 12 (9) ◽  
pp. 2601-2613 ◽  
Author(s):  
Maria Enquist-Newman ◽  
Iain M. Cheeseman ◽  
David Van Goor ◽  
David G. Drubin ◽  
Pamela B. Meluh ◽  
...  

We showed recently that a complex between Duo1p and Dam1p is required for both spindle integrity and kinetochore function in the budding yeast Saccharomyces cerevisiae. To extend our understanding of the functions and interactions of the Duo1p/Dam1p complex, we analyzed the novel gene product Dad1p (for Duo1 and Dam1 interacting). Dad1p physically associates with Duo1p by two-hybrid analysis, coimmunoprecipitates with Duo1p and Dam1p out of yeast protein extracts, and shows interdependent localization with Duo1p and Dam1p to the mitotic spindle. These results indicate that Dad1p functions as a component of the Duo1p/Dam1p complex. Like Duo1p and Dam1p, Dad1p also localizes to kinetochore regions in chromosomes spreads. Here, we also demonstrate by chromatin immunoprecipitation that Duo1p, Dam1p, and Dad1p associate specifically with centromeric DNA in a manner that is dependent upon Ndc10 and partially dependent upon the presence of microtubules. To explore the functions of Dad1p in vivo, we generated a temperature-sensitive allele, dad1-1. This allele shows spindle defects and a mitotic arrest phenotype that is dependent upon the spindle assembly checkpoint. In addition, dad1-1 mutants undergo chromosome mis-segregation at the restrictive temperature, resulting in a dramatic decrease in viability.


1969 ◽  
Vol 5 (3) ◽  
pp. 745-755
Author(s):  
W. T. JACKSON

Earlier studies on the effects of the herbicide isopropyl N-phenylcarbamate (IPC) on mitosis revealed blocked metaphases, multinucleate cells, giant nuclei and an increase in number of partly contracted chromosomes. It was assumed that IPC, like colchicine, was causing these effects by disruption of the spindle apparatus by destroying the spindle microtubules. The animal hormone melatonin causes an increase in birefringence of the mitotic spindle in animal cells, presumably by increasing the number of microtubules. We have studied the effects of IPC, melatonin, and combinations of the two on mitosis in dividing endosperm cells of the African blood lily (Haemanthus katherinae Baker) in vivo by phase-contrast and polarization microscopy. Both qualitative and quantitative data are presented. Interpretation of these results has been aided materially by a time-lapse cinemicrographic analysis of dividing cells subjected to 1 and 10 p.p.m. IPC (unpublished) and by an accompanying fine-structural analysis of untreated and IPC-treated cells. Mitosis was disrupted by 0.01-10 p.p.m. IPC, the severity of the effect depending on both concentration and stage of mitosis of the cell at the time of treatment. Concentrations of IPC that caused cessation of chromosome movement also caused loss of birefringence of the mitotic spindle. Melatonin increased birefringence of the mitotic spindle in these plant cells and partly nullified the adverse effects of IPC. The results of this study demonstrate that the herbicide IPC, under our conditions, causes disruption of mitosis and loss of birefringence of the spindle. And it has been established that an animal hormone is capable of increasing the birefringence, and presumably the number of microtubules, of the mitotic spindle in dividing endosperm cells of a higher plant. Although melatonin is capable of partly nullifying the effects of IPC, a competitive antagonism is not postulated.


2000 ◽  
Vol 6 (S2) ◽  
pp. 80-81
Author(s):  
L. Cassimeris ◽  
C. Spittle ◽  
M. Kratzer

The mitotic spindle is responsible for chromosome movement during mitosis. It is composed of a dynamic array of microtubules and associated proteins whose assembly and constant turnover are required for both spindle formation and chromosome movement. Because microtubule assembly and turnover are necessary for chromosome segregation, we are studying how cells regulate microtubule dynamics. Microtubules are polarized polymers composed of tubulin subunits; they assemble by a process of dynamic instability where individual microtubules exist in persistent phases of elongation or rapid shortening with abrupt transitions between these two states. The switch from elongation to shortening is termed catastrophe, and the switch from shortening to elongation, rescue. Although dynamic instability is an intrinsic property of the tubulin subunits, cells use associated proteins to both speed elongation (∼ 10 fold) and regulate transitions.The only protein isolated to date capable of promoting fast polymerization consistent with rates in vivo is XMAP215, a 215 kD protein from Xenopus eggs.


1999 ◽  
Vol 112 (12) ◽  
pp. 1979-1988 ◽  
Author(s):  
E.L. Grishchuk ◽  
J.R. McIntosh

The proper functioning of microtubules depends crucially on the availability of polymerizable alpha/beta tubulin dimers. Their production occurs concomitant with the folding of the tubulin polypeptides and is accomplished in part by proteins known as Cofactors A through E. In the fission yeast, Schizosaccharomyces pombe, this tubulin folding pathway is essential. We have taken advantage of the excellent cytology available in S. pombe to examine the phenotypic consequences of a deletion of sto1(+), a gene that encodes a protein similar to Cofactor E, which is required for the folding of alpha-tubulin. The interphase microtubule cytoskeleton in sto1-delta cells is severely disrupted, and as cells enter mitosis their spindles fail to form. After a transient arrest with condensed chromosomes, the cells exit mitosis and resume DNA synthesis, whereupon they septate abnormally and die. Overexpression of Spo1p is toxic to cells carrying a cold-sensitive allele of the alpha- but not the beta-tubulin gene, consistent with the suggestion that this protein plays a role like that of Cofactor E. Unlike its presumptive partner Cofactor D (Alp1p), however, Sto1p does not localize to microtubules but is found throughout the cell. Overexpression of Sto1p has no toxic effects in wild-type cells, suggesting that it is unable to disrupt alpha/beta tubulin dimers in vivo.


1998 ◽  
Vol 72 (2) ◽  
pp. 1131-1137 ◽  
Author(s):  
Jennifer T. Thomas ◽  
Laimonis A. Laimins

ABSTRACT The E6 and E7 genes of the high-risk human papillomavirus (HPV) types encode oncoproteins, and both act by interfering with the activity of cellular tumor suppressor proteins. E7 proteins act by associating with members of the retinoblastoma family, while E6 increases the turnover of p53. p53 has been implicated as a regulator of both the G1/S cell cycle checkpoint and the mitotic spindle checkpoint. When fibroblasts from p53 knockout mice are treated with the spindle inhibitor nocodazole, a rereplication of DNA occurs without transit through mitosis. We investigated whether E6 or E7 could induce a similar loss of mitotic checkpoint activity in human keratinocytes. Recombinant retroviruses expressing high-risk E6 alone, E7 alone, and E6 in combination with E7 were used to infect normal human foreskin keratinocytes (HFKs). Established cell lines were treated with nocodazole, stained with propidium iodide, and analyzed for DNA content by flow cytometry. Cells infected with high-risk E6 were found to continue to replicate DNA and accumulated an octaploid (8N) population. Surprisingly, expression of E7 alone was also able to bypass this checkpoint. Cells expressing E7 alone exhibited increased levels of p53, while those expressing E6 had significantly reduced levels. The p53 present in the E7 cells was active, as increased levels of p21 were observed. This suggested that E7 bypassed the mitotic checkpoint by a p53-independent mechanism. The levels of MDM2, a cellular oncoprotein also implicated in control of the mitotic checkpoint, were significantly elevated in the E7 cells compared to the normal HFKs. In E6-expressing cells, the levels of MDM2 were undetectable. It is possible that abrogation of Rb function by E7 or increased expression of MDM2 contributes to the loss of mitotic spindle checkpoint control in the E7 cells. These findings suggest mechanisms by which both HPV oncoproteins contribute to genomic instability at the mitotic checkpoint.


1989 ◽  
Vol 92 (4) ◽  
pp. 607-620
Author(s):  
J. Diaz-Nido ◽  
J. Avila

Brain microtubule-associated protein MAP-1 is composed of at least two polypeptides, MAP-1A and MAP-1B, which are among the main components of the neural cytoskeleton. Specific monoclonal and polyclonal antibodies against MAP-1B stain nuclei, mitotic spindles, centrosomes and the cytoplasmic microtubule network of different non-neural cells studied by immunofluorescence microscopy. It appears that these cells contain two proteins of 325K and 220K (K = 10(3) Mr), which are immunologically related to brain MAP-1B. The 325K protein, which is localized to the cytoplasmic microtubule network, the centrosome and the mitotic spindle, seems to be structurally related to the neural MAP-1B, as judged from their similar peptide maps and phosphorylation patterns. The 220K protein, which is localized to the nuclear matrix in interphase cells and to the mitotic spindle in dividing cells, has a proteolytic profile different from that of neural MAP-1B and is phosphorylated to a much lesser extent than the 325K protein. Both proteins bind tubulin in vitro, which suggests that they may participate in microtubule assembly in vivo; the 325K protein could perform such a role during the entire cell cycle, while the 220K protein could be implicated in the formation of the mitotic spindle.


1983 ◽  
Vol 96 (4) ◽  
pp. 1155-1158 ◽  
Author(s):  
BR Oakley ◽  
R Morris

In order to develop a method for obtaining mitotic synchrony in aspergillus nidulans, we have characterized previously isolated heat-sensitive nim mutations that block the nuclear division cycle in interphase at restrictive temperature. After 3.5 h at restrictive temperature the mitotic index of a strain carrying one of these mutations, nimA5, was 0, but when this strain was subsequently shifted from restrictive to permissive temperature the mitotic index increased rapidly, reaching a maximum of 78 percent after 7.5 min. When this strain was examined electron-microscopically, mitotic spindles were absent at restrictive temperature. From these data we conclude that at restrictive temperature nimA5 blocks the nuclear division cycle at a point immediately preceding the initiation of chromosomal condensation and mitotic microtubule assembly, and upon shifting to permissive control over the initiation of microtubule assembly and chromosomal condensation in vivo through a simple temperature shift and, consequently, nimA5 should be a powerful tool for studying these processes. Electron-microscopic examination of spindles of material synchronized in this manner reveals that spindle formation, although very rapid, is gradual in the sense that spindle microtubule numbers increase as spindle formation proceeds.


2003 ◽  
Vol 14 (5) ◽  
pp. 2192-2200 ◽  
Author(s):  
Yulia Ovechkina ◽  
Paul Maddox ◽  
C. Elizabeth Oakley ◽  
Xin Xiang ◽  
Stephen A. Osmani ◽  
...  

In many important organisms, including many algae and most fungi, the nuclear envelope does not disassemble during mitosis. This fact raises the possibility that mitotic onset and/or exit might be regulated, in part, by movement of important mitotic proteins into and out of the nucleoplasm. We have used two methods to determine whether tubulin levels in the nucleoplasm are regulated in the fungus Aspergillus nidulans. First, we have used benomyl to disassemble microtubules and create a pool of free tubulin that can be readily observed by immunofluorescence. We find that tubulin is substantially excluded from interphase nuclei, but is present in mitotic nuclei. Second, we have observed a green fluorescent protein/α-tubulin fusion in living cells by time-lapse spinning-disk confocal microscopy. We find that tubulin is excluded from interphase nuclei, enters the nucleus seconds before the mitotic spindle begins to form, and is removed from the nucleoplasm during the M-to-G1transition. Our data indicate that regulation of intranuclear tubulin levels plays an important, perhaps essential, role in the control of mitotic spindle formation in A. nidulans. They suggest that regulation of protein movement into the nucleoplasm may be important for regulating mitotic onset in organisms with intranuclear mitosis.


1998 ◽  
Vol 143 (4) ◽  
pp. 1029-1040 ◽  
Author(s):  
Christian Hofmann ◽  
Iain M. Cheeseman ◽  
Bruce L. Goode ◽  
Kent L. McDonald ◽  
Georjana Barnes ◽  
...  

In this paper, we describe the identification and characterization of two novel and essential mitotic spindle proteins, Duo1p and Dam1p. Duo1p was isolated because its overexpression caused defects in mitosis and a mitotic arrest. Duo1p was localized by immunofluorescence, by immunoelectron microscopy, and by tagging with green fluorescent protein (GFP), to intranuclear spindle microtubules and spindle pole bodies. Temperature-sensitive duo1 mutants arrest with short spindles. This arrest is dependent on the mitotic checkpoint. Dam1p was identified by two-hybrid analysis as a protein that binds to Duo1p. By expressing a GFP–Dam1p fusion protein in yeast, Dam1p was also shown to be associated with intranuclear spindle microtubules and spindle pole bodies in vivo. As with Duo1p, overproduction of Dam1p caused mitotic defects. Biochemical experiments demonstrated that Dam1p binds directly to microtubules with micromolar affinity. We suggest that Dam1p might localize Duo1p to intranuclear microtubules and spindle pole bodies to provide a previously unrecognized function (or functions) required for mitosis.


1995 ◽  
Vol 108 (11) ◽  
pp. 3485-3499 ◽  
Author(s):  
S.W. James ◽  
P.M. Mirabito ◽  
P.C. Scacheri ◽  
N.R. Morris

The bimE (blocked-in-mitosis) gene appears to function as a negative mitotic regulator because the recessive bimE7 mutation can override certain interphase-arresting treatments and mutations, causing abnormal induction of mitosis. We have further investigated the role of bimE in cell cycle checkpoint control by: (1) coordinately measuring mitotic induction and DNA content of bimE7 mutant cells; and (2) analyzing epistasis relationships between bimE7 and 16 different nim mutations. A combination of cytological and flow cytometric techniques was used to show that bimE7 cells at restrictive temperature (44 degrees C) undergo a normal, although somewhat slower cell cycle prior to mitotic arrest. Most bimE7 cells were fully reversible from restrictive temperature arrest, indicating that they are able to enter mitosis normally, and therefore require bimE function in order to finish mitosis. Furthermore, epistasis studies between bimE7 and mutations in cdc2 pathway components revealed that the induction of mitosis caused by inactivation of bimE requires functional p34cdc2 kinase, and that mitotic induction by bimE7 depends upon several other nim genes whose functions are not yet known. The involvement of bimE in S phase function and mitotic checkpoint control was suggested by three lines of evidence. First, at restrictive temperature the bimE7 mutation slowed the cell cycle by delaying the onset or execution of S phase. Second, at permissive temperature (30 degrees C) the bimE7 mutation conferred enhanced sensitivity to the DNA synthesis inhibitor hydroxyurea. Finally, the checkpoint linking M phase to the completion of S phase was abolished when bimE7 was combined with two nim mutations that cause arrest in G1 or S phase. A model for bimE function based on these findings is presented.


Sign in / Sign up

Export Citation Format

Share Document