scholarly journals Rapid, Endoplasmic Reticulum-independent Diffusion of the Mitotic Golgi Haze

2004 ◽  
Vol 15 (4) ◽  
pp. 1843-1852 ◽  
Author(s):  
Magnus A. B. Axelsson ◽  
Graham Warren

Early in mitosis, the mammalian Golgi apparatus disassembles, and fluorescence microscopy reveals Golgi clusters and an extensive, nonresolvable haze that either represents scattered vesicles or a merged endoplasmic reticulum (ER)-Golgi compartment. To help decide between these alternatives, we have carried out a combined microscopic and pharmacological analysis, by using a BS-C-1 cell line stably coexpressing ER and Golgi markers. Video fluorescence microscopy showed that these two organelles were morphologically distinguishable at all stages of mitosis, and photobleaching experiments showed that diffusion of the Golgi marker was unaffected by the presence of the ER. Fragmentation of the ER by using filipin III completely blocked diffusion of the ER marker but had no effect on the Golgi marker, unless it was first relocated to the ER by using brefeldin A. The Golgi haze was also studied using BODIPY ceramide. Its diffusion was slower in mitotic Golgi than in mitotic ER, but similar to that of a Golgi enzyme marker in the mitotic Golgi haze or in Golgi vesicles generated by ilimaquinone. Together, these results support the idea that the Golgi and the ER remain separate during mitosis and strongly suggest that Golgi markers move by vesicle diffusion, as opposed to lateral diffusion in continuous membranes.

Author(s):  
S.R. Allegra

The respective roles of the ribo somes, endoplasmic reticulum, Golgi apparatus and perhaps nucleus in the synthesis and maturation of melanosomes is still the subject of some controversy. While the early melanosomes (premelanosomes) have been frequently demonstrated to originate as Golgi vesicles, it is undeniable that these structures can be formed in cells in which Golgi system is not found. This report was prompted by the findings in an essentially amelanotic human cellular blue nevus (melanocytoma) of two distinct lines of melanocytes one of which was devoid of any trace of Golgi apparatus while the other had normal complement of this organelle.


1993 ◽  
Vol 294 (3) ◽  
pp. 735-743 ◽  
Author(s):  
S Benjannet ◽  
N Rondeau ◽  
L Paquet ◽  
A Boudreault ◽  
C Lazure ◽  
...  

We present herein the pulse-chase analysis of the biosynthesis of the prohormone convertases PC1 and PC2 in the endocrine GH4C1 cells infected with vaccinia virus recombinants expressing these convertases. Characterization of the pulse-labelled enzymes demonstrated that pro-PC1 (88 kDa) is cleaved into PC1 (83 kDa) and pro-PC2 (75 kDa) into PC2 (68 kDa). Secretion of glycosylated and sulphated PC1 (84 kDa) occurs about 30 min after the onset of biosynthesis, whereas glycosylated and sulphated PC2 (68 kDa) is detected in the medium after between 1 and 2 h. Furthermore, in the case of pro-PC2 only, we observed that a fraction of this precursor escapes glycosylation. A small proportion (about 5%) of the intracellular glycosylated pro-PC2 (75 kDa) is sulphated, and it is this glycosylated and sulphated precursor that is cleaved into the secretable 68 kDa form of PC2. Major differences in the carbohydrate structures of PC1 and PC2 are demonstrated by the resistance of the secreted PC1 to endoglycosidase H digestion and sensitivity of the secreted PC2 to this enzyme. Inhibition of N-glycosylation with tunicamycin caused a dramatic intracellular degradation of these convertases within the endoplasmic reticulum, with the net effect of a reduction in the available activity of PC1 and PC2. These results emphasize the importance of N-glycosylation in the folding and stability of PC1 and PC2. Pulse-labelling experiments in uninfected mouse beta TC3 and rat Rin m5F insulinoma cells, which endogenously synthesize PC2, showed that, as in infected GH4C1 cells, pro-PC2 predominates intracellularly. In order to define the site of prosegment cleavage, pulse-chase analysis was performed at low temperature (15 degrees C) or after treatment of GH4C1 cells with either brefeldin A or carbonyl cyanide m-chlorophenylhydrazone. These results demonstrated that the onset of the conversions of pro-PC1 into PC1 and non-glycosylated pro-PC2 into PC2 (65 kDa) occur in a pre-Golgi compartment, presumably within the endoplasmic reticulum. In contrast, pulse labelling in the presence of Na(2)35SO4 demonstrated that the processing of glycosylated and sulphated pro-PC2 occurs within the Golgi apparatus. In order to test the possibility that zymogen processing is performed by furin, we co-expressed this convertase with either pro-PC1 or pro-PC2. The data demonstrated the inability of furin to cleave either proenzyme.


2003 ◽  
Vol 14 (12) ◽  
pp. 5011-5018 ◽  
Author(s):  
Sapna Puri ◽  
Adam D. Linstedt

It is unclear whether the mammalian Golgi apparatus can form de novo from the ER or whether it requires a preassembled Golgi matrix. As a test, we assayed Golgi reassembly after forced redistribution of Golgi matrix proteins into the ER. Two conditions were used. In one, ER redistribution was achieved using a combination of brefeldin A (BFA) to cause Golgi collapse and H89 to block ER export. Unlike brefeldin A alone, which leaves matrix proteins in relatively large remnant structures outside the ER, the addition of H89 to BFA-treated cells caused ER accumulation of all Golgi markers tested. In the other, clofibrate treatment induced ER redistribution of matrix and nonmatrix proteins. Significantly, Golgi reassembly after either treatment was robust, implying that the Golgi has the capacity to form de novo from the ER. Furthermore, matrix proteins reemerged from the ER with faster ER exit rates. This, together with the sensitivity of BFA remnants to ER export blockade, suggests that presence of matrix proteins in BFA remnants is due to cycling via the ER and preferential ER export rather than their stable assembly in a matrix outside the ER. In summary, the Golgi apparatus appears capable of efficient self-assembly.


2005 ◽  
Vol 25 (17) ◽  
pp. 7696-7710 ◽  
Author(s):  
Hironori Inadome ◽  
Yoichi Noda ◽  
Hiroyuki Adachi ◽  
Koji Yoda

ABSTRACT The Golgi apparatus consists of a set of vesicular compartments which are distinguished by their marker proteins. These compartments are physically separated in the Saccharomyces cerevisiae cell. To characterize them extensively, we immunoisolated vesicles carrying either of the SNAREs Sed5 or Tlg2, the markers of the early and late Golgi compartments, respectively, and analyzed the membrane proteins. The composition of proteins was mostly consistent with the position of each compartment in the traffic. We found six uncharacterized but evolutionarily conserved proteins and named them Svp26 (Sed5 compartment vesicle protein of 26 kDa), Tvp38, Tvp23, Tvp18, Tvp15 (Tlg2 compartment vesicle proteins of 38, 23, 18, and 15 kDa), and Gvp36 (Golgi vesicle protein of 36 kDa). The localization of Svp26 in the early Golgi compartment was confirmed by microscopic and biochemical means. Immunoprecipitation indicated that Svp26 binds to itself and a Golgi mannosyltransferase, Ktr3. In the absence of Svp26, a considerable portion of Ktr3 was mislocalized in the endoplasmic reticulum. Our data suggest that Svp26 has a novel role in retention of a subset of membrane proteins in the early Golgi compartments.


1999 ◽  
Vol 190 (4) ◽  
pp. 523-534 ◽  
Author(s):  
Nathalie Thieblemont ◽  
Samuel D. Wright

Addition of lipopolysaccharide (LPS) to cells in the form of LPS–soluble (s)CD14 complexes induces strong cellular responses. During this process, LPS is delivered from sCD14 to the plasma membrane, and the cell-associated LPS is then rapidly transported to an intracellular site. This transport appears to be important for certain cellular responses to LPS, as drugs that block transport also inhibit signaling and cells from LPS-hyporesponsive C3H/HeJ mice fail to exhibit this transport. To identify the intracellular destination of fluorescently labeled LPS after its delivery from sCD14 into cells, we have made simultaneous observations of different organelles using fluorescent vital dyes or probes. Endosomes, lysosomes, the endoplasmic reticulum, and the Golgi apparatus were labeled using Texas red (TR)–dextran, LysoTracker™ Red DND-99, DiOC6(3), and boron dipyrromethane (BODIPY)–ceramide, respectively. After 30 min, LPS did not colocalize with endosomes, lysosomes, or endoplasmic reticulum in polymorphonuclear leukocytes, although some LPS-positive vesicles overlapped with the endosomal marker, fluorescent dextran. On the other hand, LPS did appear to colocalize with two markers of the Golgi apparatus, BODIPY–ceramide and TRITC (tetramethylrhodamine isothiocyanate)–labeled cholera toxin B subunit. We further confirmed the localization of LPS in the Golgi apparatus using an epithelial cell line, HeLa, which responds to LPS–sCD14 complexes in a CD14-dependent fashion: BODIPY–LPS was internalized and colocalized with fluorescently labeled Golgi apparatus probes in live HeLa cells. Morphological disruption of the Golgi apparatus in brefeldin A–treated HeLa cells caused intracellular redistribution of fluorescent LPS. These results are consistent with the Golgi apparatus being the primary delivery site of monomeric LPS.


2012 ◽  
Vol 23 (16) ◽  
pp. 3203-3214 ◽  
Author(s):  
Yoko Ito ◽  
Tomohiro Uemura ◽  
Keiko Shoda ◽  
Masaru Fujimoto ◽  
Takashi Ueda ◽  
...  

The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.


1994 ◽  
Vol 45 (10) ◽  
pp. 1347-1351 ◽  
Author(s):  
Janey Henderson ◽  
Béatrice Stiat-Jeunemaitre ◽  
Richard Napier ◽  
Chris Hawes

2002 ◽  
Vol 13 (3) ◽  
pp. 965-977 ◽  
Author(s):  
Roland Wedlich-Söldner ◽  
Irene Schulz ◽  
Anne Straube ◽  
Gero Steinberg

The endoplasmic reticulum (ER) of most vertebrate cells is spread out by kinesin-dependent transport along microtubules, whereas studies in Saccharomyces cerevisiae indicated that motility of fungal ER is an actin-based process. However, microtubules are of minor importance for organelle transport in yeast, but they are crucial for intracellular transport within numerous other fungi. Herein, we set out to elucidate the role of the tubulin cytoskeleton in ER organization and dynamics in the fungal pathogen Ustilago maydis. An ER-resident green fluorescent protein (GFP)-fusion protein localized to a peripheral network and the nuclear envelope. Tubules and patches within the network exhibited rapid dynein-driven motion along microtubules, whereas conventional kinesin did not participate in ER motility. Cortical ER organization was independent of microtubules or F-actin, but reformation of the network after experimental disruption was mediated by microtubules and dynein. In addition, a polar gradient of motile ER-GFP stained dots was detected that accumulated around the apical Golgi apparatus. Both the gradient and the Golgi apparatus were sensitive to brefeldin A or benomyl treatment, suggesting that the gradient represents microtubule-dependent vesicle trafficking between ER and Golgi. Our results demonstrate a role of cytoplasmic dynein and microtubules in motility, but not peripheral localization of the ER inU. maydis.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1798
Author(s):  
Ted Hackstadt ◽  
Abhilash I. Chiramel ◽  
Forrest H. Hoyt ◽  
Brandi N. Williamson ◽  
Cheryl A. Dooley ◽  
...  

A variety of immunolabeling procedures for both light and electron microscopy were used to examine the cellular origins of the host membranes supporting the SARS-CoV-2 replication complex. The endoplasmic reticulum has long been implicated as a source of membrane for the coronavirus replication organelle. Using dsRNA as a marker for sites of viral RNA synthesis, we provide additional evidence supporting ER as a prominent source of membrane. In addition, we observed a rapid fragmentation of the Golgi apparatus which is visible by 6 h and complete by 12 h post-infection. Golgi derived lipid appears to be incorporated into the replication organelle although protein markers are dispersed throughout the infected cell. The mechanism of Golgi disruption is undefined, but chemical disruption of the Golgi apparatus by brefeldin A is inhibitory to viral replication. A search for an individual SARS-CoV-2 protein responsible for this activity identified at least five viral proteins, M, S, E, Orf6, and nsp3, that induced Golgi fragmentation when expressed in eukaryotic cells. Each of these proteins, as well as nsp4, also caused visible changes to ER structure as shown by correlative light and electron microscopy (CLEM). Collectively, these results imply that specific disruption of the Golgi apparatus is a critical component of coronavirus replication.


Sign in / Sign up

Export Citation Format

Share Document