scholarly journals Insulin-stimulated Plasma Membrane Fusion of Glut4 Glucose Transporter-containing Vesicles Is Regulated by Phospholipase D1

2005 ◽  
Vol 16 (6) ◽  
pp. 2614-2623 ◽  
Author(s):  
Ping Huang ◽  
Yelena M. Altshuller ◽  
June Chunqiu Hou ◽  
Jeffrey E. Pessin ◽  
Michael A. Frohman

Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insulin signaling, and traffics with Glut4 to exocytic sites. Increasing PLD1 activity facilitates glucose uptake, whereas decreasing PLD1 activity is inhibitory. Diminished PA production does not substantially hinder trafficking of the vesicles or their docking at the plasma membrane, but it does impede fusion-mediated extracellular exposure of the transporter. The fusion block caused by RNA interference-mediated PLD1 deficiency is rescued by exogenous provision of a lipid that promotes fusion pore formation and expansion, suggesting that the step regulated by PA is late in the process of vesicle fusion.

2007 ◽  
Vol 27 (9) ◽  
pp. 3456-3469 ◽  
Author(s):  
Shaohui Huang ◽  
Larry M. Lifshitz ◽  
Christine Jones ◽  
Karl D. Bellve ◽  
Clive Standley ◽  
...  

ABSTRACT Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by ∼4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane.


1994 ◽  
Vol 77 (4) ◽  
pp. 1597-1601 ◽  
Author(s):  
J. Gao ◽  
J. Ren ◽  
E. A. Gulve ◽  
J. O. Holloszy

The maximal effects of insulin and muscle contractions on glucose transport are additive. GLUT-4 is the major glucose transporter isoform expressed in skeletal muscle. Muscle contraction and insulin each induce translocation of GLUT-4 from intracellular sites into the plasma membrane. The purpose of this study was to test the hypothesis that the incremental effect of contractions and insulin on glucose transport is mediated by additivity of the maximal effects of these stimuli on GLUT-4 translocation into the sarcolemma. Anesthetized rats were given insulin by intravenous infusion to raise plasma insulin to 2,635 +/- 638 microU/ml. The gastrocnemius-plantaris-soleus group was stimulated to contract via the sciatic nerve by using a protocol that maximally activates glucose transport. After treatment with insulin, contractions, or insulin plus contractions or no treatment, the gastrocnemius-plantaris-soleus muscle group was dissected out and was subjected to subcellular fractionation to separate the plasma membrane and intracellular membrane fractions. Insulin induced a 70% increase and contractions induced a 113% increase in the GLUT-4 content of the plasma membrane fraction. The effects of insulin and contractions were additive, as evidenced by a 185% increase in the GLUT-4 content of the sarcolemmal fraction. This finding provides evidence that the incremental effect of maximally effective insulin and contractile stimuli on glucose transport is mediated by additivity of their effects on GLUT-4 translocation into the sarcolemma.


1998 ◽  
Vol 274 (5) ◽  
pp. R1446-R1453 ◽  
Author(s):  
T. S. David ◽  
P. A. Ortiz ◽  
T. R. Smith ◽  
J. Turinsky

Rat epididymal adipocytes were incubated with 0, 0.1, and 1 mU sphingomyelinase/ml for 30 or 60 min, and glucose uptake and GLUT-1 and GLUT-4 translocation were assessed. Adipocytes exposed to 1 mU sphingomyelinase/ml exhibited a 173% increase in glucose uptake. Sphingomyelinase had no effect on the abundance of GLUT-1 in the plasma membrane of adipocytes. In contrast, 1 mU sphingomyelinase/ml increased plasma membrane content of GLUT-4 by 120% and produced a simultaneous decrease in GLUT-4 abundance in the low-density microsomal fraction. Sphingomyelinase had no effect on tyrosine phosphorylation of either the insulin receptor β-subunit or the insulin receptor substrate-1, a signaling molecule in the insulin signaling pathway. It is concluded that the incubation of adipocytes with sphingomyelinase results in insulin-like translocation of GLUT-4 to the plasma membrane and that this translocation does not occur via the activation of the initial components of the insulin signaling pathway.


2004 ◽  
Vol 287 (4) ◽  
pp. E758-E766 ◽  
Author(s):  
Anne W. Harmon ◽  
David S. Paul ◽  
Yashomati M. Patel

In 3T3-L1 adipocytes, insulin activates three major signaling cascades, the phosphoinositide 3-kinase (PI3K) pathway, the Cbl pathway, and the mitogen-activated protein kinase (MAPK) pathway. Although PI3K and Cbl mediate insulin-stimulated glucose uptake by promoting the translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane, the MAPK pathway does not have an established role in insulin-stimulated glucose uptake. We demonstrate in this report that PI3K inhibitors also inhibit the MAPK pathway. To investigate the role of the MAPK pathway separately from that of the PI3K pathway in insulin-stimulated glucose uptake, we used two specific inhibitors of MAPK kinase (MEK) activity, PD-98059 and U-0126, which reduced insulin-stimulated glucose uptake by ∼33 and 50%, respectively. Neither MEK inhibitor affected the activation of Akt or PKCζ/λ, downstream signaling molecules in the PI3K pathway. Inhibition of MEK with U-0126 did not prevent GLUT4 from translocating to the plasma membrane, nor did it inhibit the subsequent docking and fusion of GLUT4- myc with the plasma membrane. MEK inhibitors affected glucose transport mediated by GLUT4 but not GLUT1. Importantly, the presence of MEK inhibitors only at the time of the transport assay markedly impaired both insulin-stimulated glucose uptake and MAPK signaling. Conversely, removal of MEK inhibitors before the transport assay restored glucose uptake and MAPK signaling. Collectively, our studies suggest a possible role for MEK in the activation of GLUT4.


2013 ◽  
Vol 24 (16) ◽  
pp. 2544-2557 ◽  
Author(s):  
L. Amanda Sadacca ◽  
Joanne Bruno ◽  
Jennifer Wen ◽  
Wenyong Xiong ◽  
Timothy E. McGraw

Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.


2015 ◽  
Vol 185 ◽  
pp. 109-128 ◽  
Author(s):  
Marc Fuhrmans ◽  
Giovanni Marelli ◽  
Yuliya G. Smirnova ◽  
Marcus Müller

1996 ◽  
Vol 313 (1) ◽  
pp. 125-131 ◽  
Author(s):  
Jing YANG ◽  
James F. CLARKE ◽  
Catriona J. ESTER ◽  
Paul W. YOUNG ◽  
Masato KASUGA ◽  
...  

Glucose transporters (GLUTs) are continuously recycled in 3T3-L1 cells and so insulin, through its action on phosphatidylinositol 3-kinase (PI 3-kinase), could potentially alter the distribution of these transporters by enhancing retention in the plasma membrane or acting intracellularly to increase exocytosis, either by stimulating a budding or a docking and fusion process. To examine the site of involvement of PI 3-kinase in the glucose transporter recycling pathway, we have determined the kinetics of recycling under conditions in which the PI 3-kinase activity is inhibited by wortmannin. Wortmannin addition to fully insulin-stimulated cells induces a net reduction of glucose transport activity with a time course that is consistent with a major effect on the return of internalized transporters to the plasma membrane. The exocytosis of GLUT1 and GLUT4 is reduced to very low levels in wortmannin-treated cells (≈ 0.009 min-1), but the endocytosis of these isoforms is not markedly perturbed and the rate constants are approx. 10-fold higher than for exocytosis (0.099 and 0.165 min-1, respectively). The slow reduction in basal activity following treatment with wortmannin is consistent with a wortmannin effect on constitutive recycling as well as insulin-regulated exocytosis. PI 3-kinase activity that is precipitated by anti-phosphotyrosine, anti-[insulin receptor substrate 1 (IRS1)] and anti-α-p85 antibodies show the same level of insulin-stimulated activity, ≈ 0.5 pmol/20 min per dish of 3T3-L1 cells. Since the activities precipitated by all three antibodies are similar, it seems unlikely that a second insulin receptor substrate, IRS2, contributes significantly to the insulin signalling observed in 3T3-L1 cells. To examine whether insulin targets PI 3-kinase to intracellular membranes we have carried out subcellular fractionation studies. These suggest that nearly all the insulin-stimulated PI 3-kinase activity is located on intracellular, low-density, membranes. In addition, the association of PI 3-kinase with IRS1 appears to partially deplete the cytoplasm of α-p85-precipitatable activity, suggesting that IRS1 may redistribute PI 3-kinase from the cytoplasm to the low-density microsome membranes. Taken together, the trafficking kinetic and PI 3-kinase distribution studies suggest an intracellular membrane site of action of the enzyme in enhancing glucose transporter exocytosis.


1997 ◽  
Vol 321 (1) ◽  
pp. 233-238 ◽  
Author(s):  
Eric HAJDUCH ◽  
J. Carlos ALEDO ◽  
Colin WATTS ◽  
Harinder S. HUNDAL

Acute insulin stimulation of glucose transport in fat and skeletal muscle occurs principally as a result of the hormonal induced translocation of the GLUT4 glucose transporter from intracellular vesicular stores to the plasma membrane. The precise mechanisms governing the fusion of GLUT4 vesicles with the plasma membrane are very poorly understood at present but may share some similarities with synaptic vesicle fusion, as vesicle-associated membrane protein (VAMP) and cellubrevin, two proteins implicated in the process of membrane fusion, are resident in GLUT4-containing vesicles isolated from rat and murine 3T3-L1 adipocytes respectively. In this study we show that proteolysis of both cellubrevin and VAMP, induced by electroporation of isolated rat adipocytes with tetanus toxin, does not impair insulin-stimulated glucose transport or GLUT4 translocation. The hormone was found to stimulate glucose uptake by approx. 16-fold in freshly isolated rat adipocytes. After a single electroporating pulse, the ability of insulin to activate glucose uptake was lowered, but the observed stimulation was nevertheless nearly 5-fold higher than the basal rate of glucose uptake. Electroporation of adipocytes with 600 nM tetanus toxin resulted in a complete loss of both cellubrevin and VAMP expression within 60 min. However, toxin-mediated proteolysis of both these proteins had no effect on the ability of insulin to stimulate glucose transport which was elevated approx. 5-fold, an activation of comparable magnitude to that observed in cells electroporated without tetanus toxin. The lack of any significant change in insulin-stimulated glucose transport was consistent with the finding that toxin-mediated proteolysis of both cellubrevin and VAMP had no detectable effect on insulin-induced translocation of GLUT4 in adipocytes. Our findings indicate that, although cellubrevin and VAMP are resident proteins in adipocyte GLUT4-containing vesicles, they are not required for the acute insulin-induced delivery of GLUT4 to the plasma membrane.


1994 ◽  
Vol 127 (6) ◽  
pp. 1885-1894 ◽  
Author(s):  
J Zimmerberg ◽  
R Blumenthal ◽  
D P Sarkar ◽  
M Curran ◽  
S J Morris

The fusion of cells by influenza hemagglutinin (HA) is the best characterized example of protein-mediated membrane fusion. In simultaneous measurements of pairs of assays for fusion, we determined the order of detectable events during fusion. Fusion pore formation in HA-triggered cell-cell fusion was first detected by changes in cell membrane capacitance, next by a flux of fluorescent lipid, and finally by flux of aqueous fluorescent dye. Fusion pore conductance increased by small steps. A retardation of lipid and aqueous dyes occurred during fusion pore fluctuations. The flux of aqueous dye depended on the size of the molecule. The lack of movement of aqueous dyes while total fusion pore conductance increased suggests that initial HA-triggered fusion events are characterized by the opening of multiple small pores: the formation of a "sieve".


Sign in / Sign up

Export Citation Format

Share Document