scholarly journals EHD Proteins Associate with Syndapin I and II and Such Interactions Play a Crucial Role in Endosomal Recycling

2005 ◽  
Vol 16 (8) ◽  
pp. 3642-3658 ◽  
Author(s):  
Anne Braun ◽  
Roser Pinyol ◽  
Regina Dahlhaus ◽  
Dennis Koch ◽  
Paul Fonarev ◽  
...  

EHD proteins were shown to function in the exit of receptors and other membrane proteins from the endosomal recycling compartment. Here, we identify syndapins, accessory proteins in vesicle formation at the plasma membrane, as differential binding partners for EHD proteins. These complexes are formed by direct eps15-homology (EH) domain/asparagine proline phenylalanine (NPF) motif interactions. Heterologous and endogenous coimmunoprecipitations as well as reconstitutions of syndapin/EHD protein complexes at intracellular membranes of living cells demonstrate the in vivo relevance of the interaction. The combination of mutational analysis and coimmunoprecipitations performed under different nucleotide conditions strongly suggest that nucleotide binding by EHD proteins modulates the association with syndapins. Colocalization studies and subcellular fractionation experiments support a role for syndapin/EHD protein complexes in membrane trafficking. Specific interferences with syndapin–EHD protein interactions by either overexpression of the isolated EHD-binding interface of syndapin II or of the EHD1 EH domain inhibited the recycling of transferrin to the plasma membrane, suggesting that EH domain/NPF interactions are critical for EHD protein function in recycling. Consistently, both inhibitions were rescued by co-overexpression of the attacked protein component. Our data thus reveal that, in addition to a crucial role in endocytic internalization, syndapin protein complexes play an important role in endocytic receptor recycling.

2012 ◽  
Vol 11 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Fabien Lefèbvre ◽  
Valérie Prouzet-Mauléon ◽  
Michel Hugues ◽  
Marc Crouzet ◽  
Aurélie Vieillemard ◽  
...  

ABSTRACT Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae , the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P 2 production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck.


2017 ◽  
Author(s):  
Koto Kikuma ◽  
Daniel Kim ◽  
David Sutter ◽  
Xiling Li ◽  
Dion K. Dickman

ABSTRACTThe endoplasmic reticulum (ER) is an extensive presynaptic organelle, exerting important influences at synapses by responding to Ca2+ and modulating transmission, growth, lipid metabolism, and membrane trafficking. Despite intriguing evidence for these crucial functions, how presynaptic ER influences synaptic physiology remains enigmatic. To gain insight into this question, we have generated and characterized mutations in the single Extended Synaptotagmin (Esyt) ortholog in Drosophila. Esyts are evolutionarily conserved ER proteins with Ca2+ sensing domains that have recently been shown to orchestrate membrane tethering and lipid exchange between the ER and plasma membrane. We first demonstrate that Esyt localizes to an extensive ER structure that invades presynaptic terminals at the neuromuscular junction. Next, we show that synaptic growth, structure, function, and plasticity are surprisingly unperturbed at synapses lacking Esyt expression. However, presynaptic overexpression of Esyt leads to enhanced synaptic growth, neurotransmission, and sustainment of the vesicle pool during intense levels of activity, suggesting that elevated Esyt at the ER promotes constitutive membrane trafficking or lipid exchange with the plasma membrane. Finally, we find that Esyt mutants fail to maintain basal neurotransmission and short term plasticity at elevated extracellular Ca2+, consistent with Esyt functioning as an ER Ca2+ sensor that modulates synaptic activity. Thus, we identify Esyt as a presynaptic ER Ca2+ sensor that can promote neurotransmission and synaptic growth, revealing the first in vivo neuronal functions of this conserved gene family.


2021 ◽  
Author(s):  
Edward Courchaine ◽  
Martin Machyna ◽  
Korinna Straube ◽  
Sarah Sauyet ◽  
Jade Enright ◽  
...  

Cajal bodies (CBs) are ubiquitous nuclear membraneless organelles (MLOs) that promote efficient biogenesis of RNA-protein complexes. Depletion of the CB scaffolding protein coilin is lethal for vertebrate embryogenesis, making CBs a strong model for understanding the structure and function of MLOs. Although it is assumed that CBs form through biomolecular condensation, the biochemical and biophysical principles that govern CB dynamics have eluded study. Here, we identify features of the coilin protein that drive CB assembly and shape. Focusing on coilin's N-terminal domain (NTD), we discovered its unexpected capacity for oligomerization in vivo. Single amino acid mutational analysis of coilin revealed distinct molecular interactions required for oligomerization and binding to the Nopp140 ligand, which facilitates CB assembly. We demonstrate that the intrinsically disordered regions of Nopp140 have substantial condensation properties and suggest that Nopp140 binding thereby remodels stable coilin oligomers to form a particle that recruits other functional components.


2006 ◽  
Vol 173 (6) ◽  
pp. 937-948 ◽  
Author(s):  
Nikunj Sharma ◽  
Seng Hui Low ◽  
Saurav Misra ◽  
Bhattaram Pallavi ◽  
Thomas Weimbs

In polarized epithelial cells, syntaxin 3 localizes to the apical plasma membrane and is involved in membrane fusion of apical trafficking pathways. We show that syntaxin 3 contains a necessary and sufficient apical targeting signal centered around a conserved FMDE motif. Mutation of any of three critical residues within this motif leads to loss of specific apical targeting. Modeling based on the known structure of syntaxin 1 revealed that these residues are exposed on the surface of a three-helix bundle. Syntaxin 3 targeting does not require binding to Munc18b. Instead, syntaxin 3 recruits Munc18b to the plasma membrane. Expression of mislocalized mutant syntaxin 3 in Madin-Darby canine kidney cells leads to basolateral mistargeting of apical membrane proteins, disturbance of tight junction formation, and loss of ability to form an organized polarized epithelium. These results indicate that SNARE proteins contribute to the overall specificity of membrane trafficking in vivo, and that the polarity of syntaxin 3 is essential for epithelial cell polarization.


2014 ◽  
Vol 204 (4) ◽  
pp. 559-573 ◽  
Author(s):  
Alex J. Smith ◽  
Byung-Ju Jin ◽  
Julien Ratelade ◽  
Alan S. Verkman

The astrocyte water channel aquaporin-4 (AQP4) is expressed as heterotetramers of M1 and M23 isoforms in which the presence of M23–AQP4 promotes formation of large macromolecular aggregates termed orthogonal arrays. Here, we demonstrate that the AQP4 aggregation state determines its subcellular localization and cellular functions. Individually expressed M1–AQP4 was freely mobile in the plasma membrane and could diffuse into rapidly extending lamellipodial regions to support cell migration. In contrast, M23–AQP4 formed large arrays that did not diffuse rapidly enough to enter lamellipodia and instead stably bound adhesion complexes and polarized to astrocyte end-feet in vivo. Co-expressed M1– and M23–AQP4 formed aggregates of variable size that segregated due to diffusional sieving of small, mobile M1–AQP4-enriched arrays into lamellipodia and preferential interaction of large, M23–AQP4-enriched arrays with the extracellular matrix. Our results therefore demonstrate an aggregation state–dependent mechanism for segregation of plasma membrane protein complexes that confers specific functional roles to M1– and M23–AQP4.


2015 ◽  
Vol 211 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Jade P.X. Cheng ◽  
Carolina Mendoza-Topaz ◽  
Gillian Howard ◽  
Jessica Chadwick ◽  
Elena Shvets ◽  
...  

Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1−/− mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 968
Author(s):  
Ishwar Atre ◽  
Naama Mizrahi ◽  
Berta Levavi-Sivan

NKB (Neurokinin B) is already known to play a crucial role in fish reproduction, but little is known about the structure and function of NKB receptors. Based on an in silico model of the tilapia NKB receptor Tachykinin 3 receptor a (tiTac3Ra) found in the current study, we determined the key residues involved in binding to tilapia NKB and its functional homologue NKF (Neurokinin F). Despite studies in humans suggesting the crucial role of F2516.44 and M2897.43 in NKB binding, no direct peptide interaction was observed in tilapia homologs. In-silico, Ala mutations on residues F2516.44 and M2897.43 did not influence binding affinity, but significantly affected the stability of tiTac3Ra. Moreover, in vitro studies indicated them to be critical to tiNKB/tiNKF-induced receptor activity. The binding of NKB antagonists to tiTac3Ra both in-vitro and in vivo inhibits FSH (follicle stimulating hormone) and LH (luteinizing hormone) release and sperm production in mature tilapia males. Non-peptide NKB antagonist SB-222200 had a strong inhibitory effect on the Tac3Ra activation. SB-222200 also decreased LH plasma levels; two hours post intraperitoneal injection, changed sperm volume and the ratios of the different stages along the spermatogenesis in tilapia testes.


2010 ◽  
Vol 21 (22) ◽  
pp. 3915-3925 ◽  
Author(s):  
Natalia A. Bulgakova ◽  
Michaela Rentsch ◽  
Elisabeth Knust

Membrane-associated guanylate kinases (MAGUKs) are scaffolding proteins that organize supramolecular protein complexes, thereby partitioning the plasma membrane into spatially and functionally distinct subdomains. Their modular organization is ideally suited to organize protein complexes with cell type- or stage-specific composition, or both. Often more than one MAGUK isoform is expressed by one gene in the same cell, yet very little is known about their individual in vivo functions. Here, we show that two isoforms of Drosophila stardust, Sdt-H (formerly called Sdt-B2) and Sdt-D, which differ in their N terminus, are expressed in adult photoreceptors. Both isoforms associate with Crumbs and PATJ, constituents of the conserved Crumbs–Stardust complex. However, they form distinct complexes, localized at the stalk, a restricted region of the apical plasma membrane. Strikingly, Sdt-H and Sdt-D have antagonistic functions. While Sdt-H overexpression increases stalk membrane length and prevents light-dependent retinal degeneration, Sdt-D overexpression reduces stalk length and enhances light-dependent retinal degeneration. These results suggest that a fine-tuned balance of different Crumbs complexes regulates photoreceptor homeostasis.


2011 ◽  
Vol 137 (2) ◽  
pp. 137-154 ◽  
Author(s):  
Michael Fine ◽  
Marc C. Llaguno ◽  
Vincenzo Lariccia ◽  
Mei-Jung Lin ◽  
Alp Yaradanakul ◽  
...  

The roles that lipids play in endocytosis are the subject of debate. Using electrical and imaging methods, we describe massive endocytosis (MEND) in baby hamster kidney (BHK) and HEK293 cells when the outer plasma membrane monolayer is perturbed by the nonionic detergents, Triton X-100 (TX100) and NP-40. Some alkane detergents, the amphipathic drugs, edelfosine and tamoxifen, and the phospholipase inhibitor, U73122, are also effective. Uptake of the membrane tracer, FM 4–64, into vesicles and loss of reversible FM 4–64 binding confirm that 40–75% of the cell surface is internalized. Ongoing MEND stops in 2–4 s when amphipaths are removed, and amphipaths are without effect from the cytoplasmic side. Thus, expansion of the outer monolayer is critical. As found for Ca-activated MEND, vesicles formed are <100 nm in diameter, membrane ruffles are lost, and β-cyclodextrin treatments are inhibitory. However, amphipath-activated MEND does not require Ca transients, adenosine triphosphate (ATP) hydrolysis, G protein cycling, dynamins, or actin cytoskeleton remodeling. With elevated cytoplasmic ATP (>5 mM), MEND can reverse completely and be repeated multiple times in BHK and HEK293 cells, but not cardiac myocytes. Reversal is blocked by N-ethylmaleimide and a nitric oxide donor, nitroprusside. Constitutively expressed Na/Ca exchangers internalize roughly in proportion to surface membrane, whereas Na/K pump activities decrease over-proportionally. Sodium dodecyl sulfate and dodecylglucoside do not cause MEND during their application, but MEND occurs rapidly when they are removed. As monitored capacitively, the binding of these detergents decreases with MEND, whereas TX100 binding does not decrease. In summary, nonionic detergents can fractionate the plasma membrane in vivo, and vesicles formed connect immediately to physiological membrane-trafficking mechanisms. We suggest that lateral and transbilayer inhomogeneities of the plasma membrane provide potential energies that, when unbridled by triggers, can drive endocytosis by lipidic forces.


2018 ◽  
Author(s):  
Akiko Shitara ◽  
Lenka Malec ◽  
Seham Ebrahim ◽  
Desu Chen ◽  
Christopher Bleck ◽  
...  

AbstractLumen establishment and maintenance are fundamental for tubular organs physiological functions. Most of the studies investigating the mechanisms regulating this process have been carried out in cell cultures or in smaller organisms, whereas little has been done in mammalian model systems in vivo. Here we used the salivary glands of live mice to examine the role of the small GTPase Cdc42 in the regulation of the homeostasis of the intercellular canaliculi, a specialized apical domain of the acinar cells, where protein and fluid secretion occur. Depletion of Cdc42 in adult mice induced a significant expansion of the apical canaliculi, whereas depletion at late embryonic stages resulted in a complete inhibition of their post-natal formation. In addition, intravital subcellular microscopy revealed that reduced levels of Cdc42 affected membrane trafficking from and towards the plasma membrane, highlighting a novel role for Cdc42 in membrane remodeling through the negative regulation of selected endocytic pathways.


Sign in / Sign up

Export Citation Format

Share Document