scholarly journals Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to Melanosomes

2005 ◽  
Vol 16 (11) ◽  
pp. 5356-5372 ◽  
Author(s):  
Alexander C. Theos ◽  
Danièle Tenza ◽  
José A. Martina ◽  
Ilse Hurbain ◽  
Andrew A. Peden ◽  
...  

Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies.

2016 ◽  
Vol 27 (3) ◽  
pp. 588-598 ◽  
Author(s):  
Shawn T. Whitfield ◽  
Helen E. Burston ◽  
Björn D. M. Bean ◽  
Nandini Raghuram ◽  
Lymarie Maldonado-Báez ◽  
...  

Heterotetrameric adaptor protein complexes are important mediators of cargo protein sorting in clathrin-coated vesicles. The cell type–specific expression of alternate μ chains creates distinct forms of AP-1 with altered cargo sorting, but how these subunits confer differential function is unclear. Whereas some studies suggest the μ subunits specify localization to different cellular compartments, others find that the two forms of AP-1 are present in the same vesicle but recognize different cargo. Yeast have two forms of AP-1, which differ only in the μ chain. Here we show that the variant μ chain Apm2 confers distinct cargo-sorting functions. Loss of Apm2, but not of Apm1, increases cell surface levels of the v-SNARE Snc1. However, Apm2 is unable to replace Apm1 in sorting Chs3, which requires a dileucine motif recognized by the γ/σ subunits common to both complexes. Apm2 and Apm1 colocalize at Golgi/early endosomes, suggesting that they do not associate with distinct compartments. We identified a novel, conserved regulatory protein that is required for Apm2-dependent sorting events. Mil1 is a predicted lipase that binds Apm2 but not Apm1 and contributes to its membrane recruitment. Interactions with specific regulatory factors may provide a general mechanism to diversify the functional repertoire of clathrin adaptor complexes.


1999 ◽  
Vol 10 (3) ◽  
pp. 677-691 ◽  
Author(s):  
Carol Pitcher ◽  
Stefan Höning ◽  
Anja Fingerhut ◽  
Katherine Bowers ◽  
Mark Marsh

Cluster of differentiation antigen 4 (CD4), the T lymphocyte antigen receptor component and human immunodeficiency virus coreceptor, is down-modulated when cells are activated by antigen or phorbol esters. During down-modulation CD4 dissociates from p56 lck , undergoes endocytosis through clathrin-coated pits, and is then sorted in early endosomes to late endocytic organelles where it is degraded. Previous studies have suggested that phosphorylation and a dileucine sequence are required for down-modulation. Using transfected HeLa cells, in which CD4 endocytosis can be studied in the absence of p56 lck , we show that the dileucine sequence in the cytoplasmic domain is essential for clathrin-mediated CD4 endocytosis. However, this sequence is only functional as an endocytosis signal when neighboring serine residues are phosphorylated. Phosphoserine is required for rapid endocytosis because CD4 molecules in which the cytoplasmic domain serine residues are substituted with glutamic acid residues are not internalized efficiently. Using surface plasmon resonance, we show that CD4 peptides containing the dileucine sequence bind weakly to clathrin adaptor protein complexes 2 and 1. The affinity of this interaction is increased 350- to 700-fold when the peptides also contain phosphoserine residues.


2006 ◽  
Vol 75 (3) ◽  
pp. 1484-1492 ◽  
Author(s):  
Andrea Dorfleutner ◽  
Nicole B. Bryan ◽  
Siera J. Talbott ◽  
Kristin N. Funya ◽  
Stephanie L. Rellick ◽  
...  

ABSTRACT Pyrin domain (PYD) proteins have recently emerged as important signaling molecules involved in the development of innate immunity against intracellular pathogens through activation of inflammatory mediator pathways. ASC is the central adaptor protein, which links pathogen recognition by PYD-containing pathogen recognition receptors, known as PYD-Nod-like receptors (NLR), PAN, PYPAF, NALP, Nod, and Caterpiller proteins, to the activation of downstream effectors, including activation of caspase-1 and NF-κB. Activation of these effectors occurs when specific protein complexes, known as inflammasomes, are formed. PYD signal transduction leads to inflammasome assembly and activation of specific effector proteins. It is modulated by a cellular PYD-only protein (cPOP1), which binds to ASC and interferes with the recruitment of ASC to activated PYD-NLRs. Here we describe the identification and characterization of a second cellular POP (cPOP2), which shows highest homology to the PYD of PAN1. cPOP2 binds to ASC and PAN1, thereby blocking formation of cryopyrin and PAN1-containing inflammasomes, activation of caspase-1, and subsequent processing and secretion of bioactive interleukin-1β. Existence of a second cPOP provides additional insights into inflammasome formation and suggests that POPs might be a common regulatory mechanism to “fine-tune” the activity of specific PYD-NLR family protein-containing inflammasomes.


2006 ◽  
Vol 173 (4) ◽  
pp. 615-626 ◽  
Author(s):  
Christopher Foote ◽  
Steven F. Nothwehr

Yeast trans-Golgi network (TGN) membrane proteins maintain steady-state localization by constantly cycling to and from endosomes. In this study, we examined the trafficking itinerary and molecular requirements for delivery of a model TGN protein A(F→A)–alkaline phosphatase (ALP) to the prevacuolar/endosomal compartment (PVC). A(F→A)-ALP was found to reach the PVC via early endosomes (EEs) with a half-time of ∼60 min. Delivery of A(F→A)-ALP to the PVC was not dependent on either the GGA or adaptor protein 1 (AP-1) type of clathrin adaptors, which are thought to function in TGN to PVC and TGN to EE transport, respectively. Surprisingly, in cells lacking the function of both GGA and AP-1 adaptors, A(F→A)-ALP transport to the PVC was dramatically accelerated. A 12-residue cytosolic domain motif of A(F→A)-ALP was found to mediate direct binding to AP-1 and was sufficient to slow TGN→EE→PVC trafficking. These results suggest a model in which this novel sorting signal targets A(F→A)-ALP into clathrin/AP-1 vesicles at the EE for retrieval back to the TGN.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1990
Author(s):  
Inmaculada Navarro-Lérida ◽  
Miguel Sánchez-Álvarez ◽  
Miguel Ángel del Pozo

Cells and tissues are continuously exposed to both chemical and physical stimuli and dynamically adapt and respond to this variety of external cues to ensure cellular homeostasis, regulated development and tissue-specific differentiation. Alterations of these pathways promote disease progression—a prominent example being cancer. Rho GTPases are key regulators of the remodeling of cytoskeleton and cell membranes and their coordination and integration with different biological processes, including cell polarization and motility, as well as other signaling networks such as growth signaling and proliferation. Apart from the control of GTP–GDP cycling, Rho GTPase activity is spatially and temporally regulated by post-translation modifications (PTMs) and their assembly onto specific protein complexes, which determine their controlled activity at distinct cellular compartments. Although Rho GTPases were traditionally conceived as targeted from the cytosol to the plasma membrane to exert their activity, recent research demonstrates that active pools of different Rho GTPases also localize to endomembranes and the nucleus. In this review, we discuss how PTM-driven modulation of Rho GTPases provides a versatile mechanism for their compartmentalization and functional regulation. Understanding how the subcellular sorting of active small GTPase pools occurs and what its functional significance is could reveal novel therapeutic opportunities.


2010 ◽  
Vol 299 (1) ◽  
pp. E23-E32 ◽  
Author(s):  
Arthur T. Suckow ◽  
Branch Craige ◽  
Victor Faundez ◽  
William J. Cain ◽  
Steven D. Chessler

Pancreatic islet β-cells contain synaptic-like microvesicles (SLMVs). The origin, trafficking, and role of these SLMVs are poorly understood. In neurons, synaptic vesicle (SV) biogenesis is mediated by two different cytosolic adaptor protein complexes, a ubiquitous AP-2 complex and the neuron-specific AP-3B complex. Mice lacking AP-3B subunits exhibit impaired GABAergic (inhibitory) neurotransmission and reduced neuronal vesicular GABA transporter (VGAT) content. Since β-cell maturation and exocytotic function seem to parallel that of the inhibitory synapse, we predicted that AP-3B-associated vesicles would be present in β-cells. Here, we test the hypothesis that AP-3B is expressed in islets and mediates β-cell SLMV biogenesis. A secondary aim was to test whether the sedimentation properties of INS-1 β-cell microvesicles are identical to those of bona fide SLMVs isolated from PC12 cells. Our results show that the two neuron-specific AP-3 subunits β3B and μ3B are expressed in β-cells, the first time these proteins have been found to be expressed outside the nervous system. We found that β-cell SLMVs share the same sedimentation properties as PC12 SLMVs and contain SV proteins that sort specifically to AP-3B-associated vesicles in the brain. Brefeldin A, a drug that interferes with AP-3-mediated SV biogenesis, inhibits the delivery of AP-3 cargoes to β-cell SLMVs. Consistent with a role for AP-3 in the biogenesis of GABAergic SLMV in β-cells, INS-1 cell VGAT content decreases upon inhibition of AP-3 δ-subunit expression. Our findings suggest that β-cells and neurons share molecules and mechanisms important for mediating the neuron-specific membrane trafficking pathways that underlie synaptic vesicle formation.


2018 ◽  
Vol 293 (40) ◽  
pp. 15678-15690 ◽  
Author(s):  
Rajendra Singh ◽  
Charlotte Stoneham ◽  
Christopher Lim ◽  
Xiaofei Jia ◽  
Javier Guenaga ◽  
...  

2018 ◽  
Vol 46 (6) ◽  
pp. 1593-1603 ◽  
Author(s):  
Chenkang Zheng ◽  
Patricia C. Dos Santos

Iron–sulfur (Fe–S) clusters are ubiquitous cofactors present in all domains of life. The chemistries catalyzed by these inorganic cofactors are diverse and their associated enzymes are involved in many cellular processes. Despite the wide range of structures reported for Fe–S clusters inserted into proteins, the biological synthesis of all Fe–S clusters starts with the assembly of simple units of 2Fe–2S and 4Fe–4S clusters. Several systems have been associated with the formation of Fe–S clusters in bacteria with varying phylogenetic origins and number of biosynthetic and regulatory components. All systems, however, construct Fe–S clusters through a similar biosynthetic scheme involving three main steps: (1) sulfur activation by a cysteine desulfurase, (2) cluster assembly by a scaffold protein, and (3) guided delivery of Fe–S units to either final acceptors or biosynthetic enzymes involved in the formation of complex metalloclusters. Another unifying feature on the biological formation of Fe–S clusters in bacteria is that these systems are tightly regulated by a network of protein interactions. Thus, the formation of transient protein complexes among biosynthetic components allows for the direct transfer of reactive sulfur and Fe–S intermediates preventing oxygen damage and reactions with non-physiological targets. Recent studies revealed the importance of reciprocal signature sequence motifs that enable specific protein–protein interactions and consequently guide the transactions between physiological donors and acceptors. Such findings provide insights into strategies used by bacteria to regulate the flow of reactive intermediates and provide protein barcodes to uncover yet-unidentified cellular components involved in Fe–S metabolism.


Sign in / Sign up

Export Citation Format

Share Document