scholarly journals Cellular Pyrin Domain-Only Protein 2 Is a Candidate Regulator of Inflammasome Activation

2006 ◽  
Vol 75 (3) ◽  
pp. 1484-1492 ◽  
Author(s):  
Andrea Dorfleutner ◽  
Nicole B. Bryan ◽  
Siera J. Talbott ◽  
Kristin N. Funya ◽  
Stephanie L. Rellick ◽  
...  

ABSTRACT Pyrin domain (PYD) proteins have recently emerged as important signaling molecules involved in the development of innate immunity against intracellular pathogens through activation of inflammatory mediator pathways. ASC is the central adaptor protein, which links pathogen recognition by PYD-containing pathogen recognition receptors, known as PYD-Nod-like receptors (NLR), PAN, PYPAF, NALP, Nod, and Caterpiller proteins, to the activation of downstream effectors, including activation of caspase-1 and NF-κB. Activation of these effectors occurs when specific protein complexes, known as inflammasomes, are formed. PYD signal transduction leads to inflammasome assembly and activation of specific effector proteins. It is modulated by a cellular PYD-only protein (cPOP1), which binds to ASC and interferes with the recruitment of ASC to activated PYD-NLRs. Here we describe the identification and characterization of a second cellular POP (cPOP2), which shows highest homology to the PYD of PAN1. cPOP2 binds to ASC and PAN1, thereby blocking formation of cryopyrin and PAN1-containing inflammasomes, activation of caspase-1, and subsequent processing and secretion of bioactive interleukin-1β. Existence of a second cPOP provides additional insights into inflammasome formation and suggests that POPs might be a common regulatory mechanism to “fine-tune” the activity of specific PYD-NLR family protein-containing inflammasomes.

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 1469 ◽  
Author(s):  
Tomasz Próchnicki ◽  
Matthew S. Mangan ◽  
Eicke Latz

Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K+ efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca2+ fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation.


2021 ◽  
Author(s):  
Giuseppe Bombaci ◽  
Mayuresh A Sarangdhar ◽  
Nicola Andina ◽  
Aubry Tardivel ◽  
Eric Chi-Wang Yu ◽  
...  

Inflammasomes are cytosolic innate immune sensors that, upon activation, induce caspase-1 mediated inflammation. Although inflammation is protective, uncontrolled excessive inflammation can cause inflammatory diseases and is also detrimental in COVID-19 infection. However, the underlying mechanisms that control inflammasome activation are incompletely understood. Here we report that the leucine rich repeat (LRR) protein Ribonuclease inhibitor (RNH1), which shares homology with LRRs of NOD-like receptor family pyrin domain (PYD)-containing (NLRP) proteins, attenuates inflammasome activation. Mechanistically, RNH1 decreased pro-IL1b expression and induced proteasome-mediated caspase-1 degradation. Corroborating this, mouse models of monosodium urate (MSU)-induced peritonitis and LPS-induced endotoxemia, which are dependent on caspase-1, respectively showed increased neutrophil infiltration and lethality in Rnh1-/- mice compared to WT mice. Further, RNH1 protein levels were negatively correlated with inflammation and disease severity in hospitalized COVID-19 patients. We propose that RNH1 is a new inflammasome regulator with relevance to COVID-19 severity.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Mathias S. Dick ◽  
Lorenzo Sborgi ◽  
Sebastian Rühl ◽  
Sebastian Hiller ◽  
Petr Broz

Abstract A hallmark of inflammasome activation is the ASC speck, a micrometre-sized structure formed by the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD), which consists of a pyrin domain (PYD) and a caspase recruitment domain (CARD). Here we show that assembly of the ASC speck involves oligomerization of ASCPYD into filaments and cross-linking of these filaments by ASCCARD. ASC mutants with a non-functional CARD only assemble filaments but not specks, and moreover disrupt endogenous specks in primary macrophages. Systematic site-directed mutagenesis of ASCPYD is used to identify oligomerization-deficient ASC mutants and demonstrate that ASC speck formation is required for efficient processing of IL-1β, but dispensable for gasdermin-D cleavage and pyroptosis induction. Our results suggest that the oligomerization of ASC creates a multitude of potential caspase-1 activation sites, thus serving as a signal amplification mechanism for inflammasome-mediated cytokine production.


2018 ◽  
Vol 10 (465) ◽  
pp. eaah4066 ◽  
Author(s):  
Richard Gordon ◽  
Eduardo A. Albornoz ◽  
Daniel C. Christie ◽  
Monica R. Langley ◽  
Vinod Kumar ◽  
...  

Parkinson’s disease (PD) is characterized by a profound loss of dopaminergic neurons in the substantia nigra, accompanied by chronic neuroinflammation, mitochondrial dysfunction, and widespread accumulation of α-synuclein–rich protein aggregates in the form of Lewy bodies. However, the mechanisms linking α-synuclein pathology and dopaminergic neuronal death to chronic microglial neuroinflammation have not been completely elucidated. We show that activation of the microglial NLR family pyrin domain containing 3 (NLRP3) inflammasome is a common pathway triggered by both fibrillar α-synuclein and dopaminergic degeneration in the absence of α-synuclein aggregates. Cleaved caspase-1 and the inflammasome adaptor protein apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) were elevated in the substantia nigra of the brains of patients with PD and in multiple preclinical PD models. NLRP3 activation by fibrillar α-synuclein in mouse microglia resulted in a delayed but robust activation of the NLRP3 inflammasome leading to extracellular interleukin-1β and ASC release in the absence of pyroptosis. Nanomolar doses of a small-molecule NLRP3 inhibitor, MCC950, abolished fibrillar α-synuclein–mediated inflammasome activation in mouse microglial cells and extracellular ASC release. Furthermore, oral administration of MCC950 in multiple rodent PD models inhibited inflammasome activation and effectively mitigated motor deficits, nigrostriatal dopaminergic degeneration, and accumulation of α-synuclein aggregates. These findings suggest that microglial NLRP3 may be a sustained source of neuroinflammation that could drive progressive dopaminergic neuropathology and highlight NLRP3 as a potential target for disease-modifying treatments for PD.


Pharmacology ◽  
2018 ◽  
Vol 101 (5-6) ◽  
pp. 236-245 ◽  
Author(s):  
Shiro Nakamura ◽  
Toshio Watanabe ◽  
Tetsuya Tanigawa ◽  
Sunao Shimada ◽  
Yuji Nadatani ◽  
...  

Activation of the NOD-Like Receptor Family, Pyrin Domain-Containing 3 (NLRP3) inflammasome, which consists of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1, triggers pro-caspase-1 cleavage promoting the processing of pro-interleukin (IL)-1β into mature IL-1β, which is critical for the development of non-steroidal anti-inflammatory drug (NSAID)-induced enteropathy. We investigated the effects of isoliquiritigenin, a flavonoid derived from the roots of Glycyrrhiza species, on NSAID-induced small intestinal damage and the inflammasome activation. To induce enteropathy, mice were administered indomethacin by gavage with or without isoliquiritigenin pretreatment. Some mice received an intraperitoneal injection of recombinant murine IL-1β in addition to isoliquiritigenin and indomethacin. Indomethacin induced small intestinal damage and increased protein levels of cleaved caspase-1 and mature IL-1β in the small intestine. Treatment with 7.5 and 75 mg/kg isoliquiritigenin inhibited indomethacin-induced small intestinal damage by 40 and 56%, respectively. Isoliquiritigenin also inhibited the indomethacin-induced increase in cleaved caspase-1 and mature IL-1β protein levels, whereas it did not affect the mRNA expression of NLRP3, ASC, caspase-1, and IL-1β. Protection against intestinal damage in isoliquiritigenin-treated mice was completely abolished with exogenous IL-1β. NLRP3–/– and caspase-1–/– mice exhibited resistance to intestinal damage, and isoliquiritigenin treatment failed to inhibit the damage in NLRP3–/– and caspase-1–/– mice. Isoliquiritigenin prevents NSAID-induced small intestinal damage by inhibiting NLRP3 inflammasome activation.


Inflammasome ◽  
2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Mélanie Bodnar ◽  
Virginie Petrilli

AbstractInflammasomes are multi-protein complexes that play a crucial role in innate immunity. They are assembled by cytosolic sensors of the Nucleotide-binding domain and Leucine-rich repeat containing Receptor (NLR) and PYrin and HIN (PYHIN) domain-containing protein families upon sensing various pathogens and danger signals. Inflammasome formation culminates in caspase-1 activation, which causes the cleavage of pro-IL-1β and pro- IL-18 into active cytokines; this eventually results in the induction of an inflammatory cell death called pyroptosis. Recent data using Gram-negative bacteria suggests a role for caspase-11 not only in NLRP3 inflammasome activation but also in a caspase-1- and inflammasome-independent cell death. This novel caspase-11-dependent pathway is critical to control infection by Gram-negative bacteria and has been named the noncanonical inflammasome.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Baochen Bai ◽  
Yanyan Yang ◽  
Qi Wang ◽  
Min Li ◽  
Chao Tian ◽  
...  

Abstract Inflammasomes are a class of cytosolic protein complexes. They act as cytosolic innate immune signal receptors to sense pathogens and initiate inflammatory responses under physiological and pathological conditions. The NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18, which are mediated by caspase-1, and secretes mature forms of these mediators from cells to promote the further inflammatory process and oxidative stress. Simultaneously, cells undergo pro-inflammatory programmed cell death, termed pyroptosis. The danger signals for activating NLRP3 inflammasome are very extensive, especially reactive oxygen species (ROS), which act as an intermediate trigger to activate NLRP3 inflammasome, exacerbating subsequent inflammatory cascades and cell damage. Vascular endothelium at the site of inflammation is actively involved in the regulation of inflammation progression with important implications for cardiovascular homeostasis as a dynamically adaptable interface. Endothelial dysfunction is a hallmark and predictor for cardiovascular ailments or adverse cardiovascular events, such as coronary artery disease, diabetes mellitus, hypertension, and hypercholesterolemia. The loss of proper endothelial function may lead to tissue swelling, chronic inflammation, and the formation of thrombi. As such, elimination of endothelial cell inflammation or activation is of clinical relevance. In this review, we provided a comprehensive perspective on the pivotal role of NLRP3 inflammasome activation in aggravating oxidative stress and endothelial dysfunction and the possible underlying mechanisms. Furthermore, we highlighted the contribution of noncoding RNAs to NLRP3 inflammasome activation-associated endothelial dysfunction, and outlined potential clinical drugs targeting NLRP3 inflammasome involved in endothelial dysfunction. Collectively, this summary provides recent developments and perspectives on how NLRP3 inflammasome interferes with endothelial dysfunction and the potential research value of NLRP3 inflammasome as a potential mediator of endothelial dysfunction.


2016 ◽  
Vol 311 (1) ◽  
pp. C83-C100 ◽  
Author(s):  
Michael A. Katsnelson ◽  
Kristen M. Lozada-Soto ◽  
Hana M. Russo ◽  
Barbara A. Miller ◽  
George R. Dubyak

Nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) is a cytosolic protein that nucleates assembly of inflammasome signaling platforms, which facilitate caspase-1-mediated IL-1β release and other inflammatory responses in myeloid leukocytes. NLRP3 inflammasomes are assembled in response to multiple pathogen- or environmental stress-induced changes in basic cell physiology, including the destabilization of lysosome integrity and activation of K+-permeable channels/transporters in the plasma membrane (PM). However, the quantitative relationships between lysosome membrane permeabilization (LMP), induction of increased PM K+ permeability, and activation of NLRP3 signaling are incompletely characterized. We used Leu-Leu- O-methyl ester (LLME), a soluble lysosomotropic agent, to quantitatively track the kinetics and extent of LMP in relation to NLRP3 inflammasome signaling responses (ASC oligomerization, caspase-1 activation, IL-1β release) and PM cation fluxes in murine bone marrow-derived dendritic cells (BMDCs). Treatment of BMDCs with submillimolar (≤1 mM) LLME induced slower and partial increases in LMP that correlated with robust NLRP3 inflammasome activation and K+ efflux. In contrast, supramillimolar (≥2 mM) LLME elicited extremely rapid and complete collapse of lysosome integrity that was correlated with suppression of inflammasome signaling. Supramillimolar LLME also induced dominant negative effects on inflammasome activation by the canonical NLRP3 agonist nigericin; this inhibition correlated with an increase in NLRP3 ubiquitination. LMP elicited rapid BMDC death by both inflammasome-dependent pyroptosis and inflammasome-independent necrosis. LMP also triggered Ca2+ influx, which attenuated LLME-stimulated NLRP3 inflammasome signaling but potentiated LLME-induced necrosis. Taken together, these studies reveal a previously unappreciated signaling network that defines the coupling between LMP, changes in PM cation fluxes, cell death, and NLRP3 inflammasome activation.


2008 ◽  
Vol 29 (3) ◽  
pp. 534-544 ◽  
Author(s):  
Denise P Abulafia ◽  
Juan Pablo de Rivero Vaccari ◽  
J Diego Lozano ◽  
George Lotocki ◽  
Robert W Keane ◽  
...  

Inflammation is a major contributor to the pathogenesis of cerebral ischemia and stroke. In the peripheral immune response, caspase-1 activation involves the formation of a macromolecular complex termed the inflammasome. We determined whether nucleotide-binding, leucine-rich repeat, pyrin domain containing 1 (NLRP1), molecular platform consisting of capase-1, apoptosis-associated speck-like protein containing a caspase-activating recruitment domain (ASC), and NLRP1, is expressed in the normal and postischemic brain. Mice underwent thromboembolic stroke to investigate the formation of the inflammasome and subsequent activation of downstream inflammatory responses. Western blot analysis showed expression and activation of interleukin (IL) IL-1β and IL-18 at 24 h after stroke. Size-exclusion chromatography and coimmunoprecipitation analysis showed protein association between NLRP1, ASC, caspase-1, and the X-linked inhibitor of apoptosis protein (XIAP). After ischemia, immunohistochemical analysis revealed inflammasome proteins in neurons, astrocytes, and microglia/macrophages. The potential of the inflammasome as an antiinflammatory target was showed by interference of inflammasome activation resulting in reduced cytokine levels in mice treated after ischemia with a neutralizing antibody against NLRP1. These findings show that the inflammasome complex forms after focal brain ischemia and may be a novel therapeutic target for reducing the detrimental consequences of postischemic inflammation.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 120
Author(s):  
Jialu Ma ◽  
Shasha Zhao ◽  
Xiao Gao ◽  
Rui Wang ◽  
Juan Liu ◽  
...  

Mycobacterium tuberculosis (MTB) infection is characterized by granulomatous lung lesions and systemic inflammatory responses during active disease. Inflammasome activation is involved in regulation of inflammation. Inflammasomes are multiprotein complexes serving a platform for activation of caspase-1, which cleaves the proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18 into their active forms. These cytokines play an essential role in MTB control. MTB infection triggers activation of the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes in vitro, but only AIM2 and apoptosis-associated speck-like protein containing a caspase-activation recruitment domain (ASC), rather than NLRP3 or caspase-1, favor host survival and restriction of mycobacterial replication in vivo. Interferons (IFNs) inhibits MTB-induced inflammasome activation and IL-1 signaling. In this review, we focus on activation and regulation of the NLRP3 and AIM2 inflammasomes after exposure to MTB, as well as the effect of inflammasome activation on host defense against the infection.


Sign in / Sign up

Export Citation Format

Share Document