scholarly journals Role of Insulin-dependent Cortical Fodrin/Spectrin Remodeling in Glucose Transporter 4 Translocation in Rat Adipocytes

2006 ◽  
Vol 17 (10) ◽  
pp. 4249-4256 ◽  
Author(s):  
Libin Liu ◽  
Mark P. Jedrychowski ◽  
Steven P. Gygi ◽  
Paul F. Pilch

Fodrin or nonerythroid spectrin is an abundant component of the cortical cytoskeletal network in rat adipocytes. Fodrin has a highly punctate distribution in resting cells, and insulin causes a dramatic remodeling of fodrin to a more diffuse pattern. Insulin-mediated remodeling of actin occurs to a lesser extent than does that of fodrin. We show that fodrin interacts with the t-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 4, and this interaction is increased by insulin stimulation and decreased by prior latrunculin A treatment. Latrunculin A disrupts all actin filaments, inhibits glucose transporter 4 (GLUT4) translocation, and causes fodrin to partially redistribute from the plasma membrane to the cytosol. In contrast, cytochalasin D disrupts only the short actin filament signal, and cytochalasin D neither inhibits GLUT4 translocation nor fodrin redistribution in adipocytes. Together, our data suggest that insulin induces remodeling of the fodrin–actin network, which is required for the fusion of GLUT4 storage vesicles with the plasma membrane by permitting their access to the t-SNARE syntaxin 4.

2000 ◽  
Vol 346 (2) ◽  
pp. 321-328 ◽  
Author(s):  
Waka OMATA ◽  
Hiroshi SHIBATA ◽  
Lu LI ◽  
Kuniaki TAKATA ◽  
Itaru KOJIMA

Actin-based cytoskeletons have been implicated in insulin-stimulated glucose transport and translocation of the insulin-regulated glucose transporter, GLUT4, from the intracellular pool to the plasma membrane. However, most previous studies were done using adherent cell systems such as L6 myotubes and 3T3-L1 adipocytes, and very little information is available on the significance of the actin filaments to the insulin action in isolated adipocytes, a widely used experimental system. In the present study, we investigated the physiological role of actin filaments in the subcellular trafficking of GLUT4 in isolated rat adipocytes. We first compared the effects of two actin-disrupting reagents, latrunculin A and cytochalasin D, on the organization of the actin filaments as well as on the insulin action on glucose transport by laser confocal microscopy combined with biochemical analysis of the insulin action. Treatment of the cells with latrunculin A induced dose- and time-dependent disappearance of the filamentous actin, which correlated very well with inhibition of the insulin effect on glucose transport. Although cytochalasin D at 50 μM significantly inhibited insulin-stimulated glucose transport, it was not effective in disassembly of the actin filaments; rather, many intense punctate signals were observed in cytochalasin D-treated cells. In the actin-disrupted adipocytes treated with latrunculin A, insulin-induced GLUT4 translocation was inhibited completely. In addition, latrunculin A remarkably inhibited both insulin-induced glucose transport and GLUT4 translocation in the presense of Dk-(62-85), a potent inhibitor of GLUT4 endocytosis, suggesting that intactness of the actin filaments was necessary for insulin-induced exocytosis of the GLUT4-containing vesicles. On the other hand, latrunculin A showed little inhibitory effect on either endocytosis of the trypsin-cleaved 35-kDa fragment of GLUT4 or decay of the glucose transport activity after addition of wortmannin in insulin-stimulated cells. The results of our experiment show clearly that, in rat adipocytes, (i) latrunculin A may be a more suitable tool than cytochalasin D for disruption of actin filaments, and (ii) actin filaments play a crucial role in exocytotic recruitment of GLUT4 to the plasma membrane from the intracellular pool, but not in its endocytosis.


1997 ◽  
Vol 321 (1) ◽  
pp. 233-238 ◽  
Author(s):  
Eric HAJDUCH ◽  
J. Carlos ALEDO ◽  
Colin WATTS ◽  
Harinder S. HUNDAL

Acute insulin stimulation of glucose transport in fat and skeletal muscle occurs principally as a result of the hormonal induced translocation of the GLUT4 glucose transporter from intracellular vesicular stores to the plasma membrane. The precise mechanisms governing the fusion of GLUT4 vesicles with the plasma membrane are very poorly understood at present but may share some similarities with synaptic vesicle fusion, as vesicle-associated membrane protein (VAMP) and cellubrevin, two proteins implicated in the process of membrane fusion, are resident in GLUT4-containing vesicles isolated from rat and murine 3T3-L1 adipocytes respectively. In this study we show that proteolysis of both cellubrevin and VAMP, induced by electroporation of isolated rat adipocytes with tetanus toxin, does not impair insulin-stimulated glucose transport or GLUT4 translocation. The hormone was found to stimulate glucose uptake by approx. 16-fold in freshly isolated rat adipocytes. After a single electroporating pulse, the ability of insulin to activate glucose uptake was lowered, but the observed stimulation was nevertheless nearly 5-fold higher than the basal rate of glucose uptake. Electroporation of adipocytes with 600 nM tetanus toxin resulted in a complete loss of both cellubrevin and VAMP expression within 60 min. However, toxin-mediated proteolysis of both these proteins had no effect on the ability of insulin to stimulate glucose transport which was elevated approx. 5-fold, an activation of comparable magnitude to that observed in cells electroporated without tetanus toxin. The lack of any significant change in insulin-stimulated glucose transport was consistent with the finding that toxin-mediated proteolysis of both cellubrevin and VAMP had no detectable effect on insulin-induced translocation of GLUT4 in adipocytes. Our findings indicate that, although cellubrevin and VAMP are resident proteins in adipocyte GLUT4-containing vesicles, they are not required for the acute insulin-induced delivery of GLUT4 to the plasma membrane.


1999 ◽  
Vol 19 (11) ◽  
pp. 7771-7781 ◽  
Author(s):  
Michelle M. Hill ◽  
Sharon F. Clark ◽  
David F. Tucker ◽  
Morris J. Birnbaum ◽  
David E. James ◽  
...  

ABSTRACT Insulin stimulates glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3K) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt, a downstream target of PI3K in regulation of GLUT4 translocation, has been controversial. Here we report that microinjection of a PKB substrate peptide or an antibody to PKB inhibited insulin-stimulated GLUT4 translocation to the plasma membrane by 66 or 56%, respectively. We further examined the activation of PKB isoforms following treatment of cells with insulin or platelet-derived growth factor (PDGF) and found that PKBβ is preferentially expressed in both rat and 3T3-L1 adipocytes, whereas PKBα expression is down-regulated in 3T3-L1 adipocytes. A switch in growth factor response was also observed when 3T3-L1 fibroblasts were differentiated into adipocytes. While PDGF was more efficacious than insulin in stimulating PKB phosphorylation in fibroblasts, PDGF did not stimulate PKBβ phosphorylation to any significant extent in adipocytes, as assessed by several methods. Moreover, insulin, but not PDGF, stimulated the translocation of PKBβ to the plasma membrane and high-density microsome fractions of 3T3-L1 adipocytes. These results support a role for PKBβ in insulin-stimulated glucose transport in adipocytes.


2021 ◽  
Author(s):  
Hannah L. Black ◽  
Rachel Livingstone ◽  
Cynthia C. Mastick ◽  
Mohammed Al Tobi ◽  
Holly Taylor ◽  
...  

Adipocytes are key to metabolic regulation, exhibiting insulin-stimulated glucose transport which is underpinned by the insulin-stimulated delivery of glucose transporter-4 (GLUT4)- containing vesicles to the plasma membrane where they dock and fuse increasing cell surface GLUT4 levels. Adipocytokines such as adiponectin are secreted via a similar mechanism. We used genome editing to knockout Syntaxin-4 a protein reported to mediate GLUT4-vesicle fusion with the plasma membrane in 3T3-L1 adipocytes. Syntaxin-4 knockout reduced insulin-stimulated glucose transport and adiponectin secretion by ∼50% and reduced GLUT4 levels. Ectopic expression of HA-GLUT4-GFP showed that Syntaxin-4 knockout cells retain significant GLUT4 translocation capacity demonstrating that Syntaxin-4 is dispensable for insulin-stimulated GLUT4 translocation. Analysis of recycling kinetics revealed only a modest reduction in the exocytic rate of GLUT4 in knockout cells, and little effect on endocytosis. These analyses demonstrate that Syntaxin-4 is not always rate limiting for GLUT4 delivery to the cell surface. In sum, we show that Syntaxin-4 knockout results in reduced insulin-stimulated glucose transport, depletion of cellular GLUT4 levels and inhibition of adiponectin secretion but has only modest effects on the translocation capacity of the cells.


2006 ◽  
Vol 26 (16) ◽  
pp. 6065-6081 ◽  
Author(s):  
Anne M. Kong ◽  
Kristy A. Horan ◽  
Absorn Sriratana ◽  
Charles G. Bailey ◽  
Luke J. Collyer ◽  
...  

ABSTRACT Exogenous delivery of carrier-linked phosphatidylinositol 3-phosphate [PtdIns(3)P] to adipocytes promotes the trafficking, but not the insertion, of the glucose transporter GLUT4 into the plasma membrane. However, it is yet to be demonstrated if endogenous PtdIns(3)P regulates GLUT4 trafficking and, in addition, the metabolic pathways mediating plasma membrane PtdIns(3)P synthesis are uncharacterized. In unstimulated 3T3-L1 adipocytes, conditions under which PtdIns(3,4,5)P3 was not synthesized, ectopic expression of wild-type, but not catalytically inactive 72-kDa inositol polyphosphate 5-phosphatase (72-5ptase), generated PtdIns(3)P at the plasma membrane. Immunoprecipitated 72-5ptase from adipocytes hydrolyzed PtdIns(3,5)P2, forming PtdIns(3)P. Overexpression of the 72-5ptase was used to functionally dissect the role of endogenous PtdIns(3)P in GLUT4 translocation and/or plasma membrane insertion. In unstimulated adipocytes wild type, but not catalytically inactive, 72-5ptase, promoted GLUT4 translocation and insertion into the plasma membrane but not glucose uptake. Overexpression of FLAG-2xFYVE/Hrs, which binds and sequesters PtdIns(3)P, blocked 72-5ptase-induced GLUT4 translocation. Actin monomer binding, using latrunculin A treatment, also blocked 72-5ptase-stimulated GLUT4 translocation. 72-5ptase expression promoted GLUT4 trafficking via a Rab11-dependent pathway but not by Rab5-mediated endocytosis. Therefore, endogenous PtdIns(3)P at the plasma membrane promotes GLUT4 translocation.


2002 ◽  
Vol 283 (3) ◽  
pp. E514-E524 ◽  
Author(s):  
Lori L. Tortorella ◽  
Paul F. Pilch

Insulin regulates the uptake of glucose into skeletal muscle and adipocytes by redistributing the tissue-specific glucose transporter GLUT4 from intracellular vesicles to the cell surface. To date, GLUT4 is the only protein involved in insulin-regulated vesicular traffic that has this tissue distribution, thus raising the possibility that its expression alone may allow formation of an insulin-responsive vesicular compartment. We show here that treatment of differentiating C2C12myoblasts with dexamethasone, acting via the glucocorticoid receptor, causes a ≥10-fold increase in GLUT4 expression but results in no significant change in insulin-stimulated glucose transport. Signaling from the insulin receptor to its target, Akt2, and expression of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor, or SNARE, proteins syntaxin 4 and vesicle-associated membrane protein are normal in dexamethasone-treated C2C12 cells. However, these cells show no insulin-dependent trafficking of the insulin-responsive aminopeptidase or the transferrin receptor, respective markers for intracellular GLUT4-rich compartments and endosomes that are insulin responsive in mature muscle and adipose cells. Therefore, these data support the hypothesis that GLUT4 expression by itself is insufficient to establish an insulin-sensitive vesicular compartment.


2013 ◽  
Vol 24 (16) ◽  
pp. 2544-2557 ◽  
Author(s):  
L. Amanda Sadacca ◽  
Joanne Bruno ◽  
Jennifer Wen ◽  
Wenyong Xiong ◽  
Timothy E. McGraw

Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.


2005 ◽  
Vol 168 (6) ◽  
pp. 921-928 ◽  
Author(s):  
Eijiro Yamada ◽  
Shuichi Okada ◽  
Tsugumichi Saito ◽  
Kihachi Ohshima ◽  
Minoru Sato ◽  
...  

We have identified an unusual potential dual Akt/protein kinase B consensus phosphorylation motif in the protein Synip (RxKxRS97xS99). Surprisingly, serine 97 is not appreciably phosphorylated, whereas serine 99 is only a specific substrate for Akt2 but not Akt1 or Akt3. Although wild-type Synip (WT-Synip) undergoes an insulin-stimulated dissociation from Syntaxin4, the Synip serine 99 to phenylalanine mutant (S99F-Synip) is resistant to Akt2 phosphorylation and fails to display insulin-stimulated Syntaxin4 dissociation. Furthermore, overexpression of WT-Synip in 3T3L1 adipocytes had no effect on insulin-stimulated recruitment of glucose transporter 4 (GLUT4) to the plasma membrane, whereas overexpression of S99F-Synip functioned in a dominant-interfering manner by preventing insulin-stimulated GLUT4 recruitment and plasma membrane fusion. These data demonstrate that insulin activation of Akt2 specifically regulates the docking/fusion step of GLUT4-containing vesicles at the plasma membrane through the regulation of Synip phosphorylation and Synip–Syntaxin4 interaction.


2004 ◽  
Vol 24 (17) ◽  
pp. 7567-7577 ◽  
Author(s):  
Makoto Funaki ◽  
Paramjeet Randhawa ◽  
Paul A. Janmey

ABSTRACT GLUT4 (glucose transporter 4) plays a pivotal role in insulin-induced glucose uptake to maintain normal blood glucose levels. Here, we report that a cell-permeable phosphoinositide-binding peptide induced GLUT4 translocation to the plasma membrane without inhibiting IRAP (insulin-responsive aminopeptidase) endocytosis. However, unlike insulin treatment, the peptide treatment did not increase glucose uptake in 3T3-L1 adipocytes, indicating that GLUT4 translocation and activation are separate events. GLUT4 activation can occur at the plasma membrane, since insulin was able to increase glucose uptake with a shorter time lag when inactive GLUT4 was first translocated to the plasma membrane by pretreating the cells with this peptide. Inhibition of phosphatidylinositol (PI) 3-kinase activity failed to inhibit GLUT4 translocation by the peptide but did inhibit glucose uptake when insulin was added following peptide treatment. Insulin, but not the peptide, stimulated GLUT1 translocation. Surprisingly, the peptide pretreatment inhibited insulin-induced GLUT1 translocation, suggesting that the peptide treatment has both a stimulatory effect on GLUT4 translocation and an inhibitory effect on insulin-induced GLUT1 translocation. These results suggest that GLUT4 requires translocation to the plasma membrane, as well as activation at the plasma membrane, to initiate glucose uptake, and both of these steps normally require PI 3-kinase activation.


Sign in / Sign up

Export Citation Format

Share Document