scholarly journals Roles of the CDK Phosphorylation Sites of Yeast Cdc6 in Chromatin Binding and Rereplication

2007 ◽  
Vol 18 (4) ◽  
pp. 1324-1336 ◽  
Author(s):  
Sangeet Honey ◽  
Bruce Futcher

The Saccharomyces cerevisiae Cdc6 protein is crucial for DNA replication. In the absence of cyclin-dependent kinase (CDK) activity, Cdc6 binds to replication origins, and loads Mcm proteins. In the presence of CDK activity, Cdc6 does not bind to origins, and this helps prevent rereplication. CDK activity affects Cdc6 function by multiple mechanisms: CDK activity affects transcription of CDC6, degradation of Cdc6, nuclear import of Cdc6, and binding of Cdc6 to Clb2. Here we examine some of these mechanisms individually. We find that when Cdc6 is forced into the nucleus during late G1 or S, it will not substantially reload onto chromatin no matter whether its CDK sites are present or not. In contrast, at a G2/M nocodazole arrest, Cdc6 will reload onto chromatin if and only if its CDK sites have been removed. Trace amounts of nonphosphorylatable Cdc6 are dominant lethal in strains bearing nonphosphorylatable Orc2 and Orc6, apparently because of rereplication. This synthetic dominant lethality occurs even in strains with wild-type MCM genes. Nonphosphorylatable Cdc6, or Orc2 and Orc6, sensitize cells to rereplication caused by overexpression of various replication initiation proteins such as Dpb11 and Sld2.

2014 ◽  
Vol 204 (4) ◽  
pp. 507-522 ◽  
Author(s):  
Vincent Gaggioli ◽  
Eva Zeiser ◽  
David Rivers ◽  
Charles R. Bradshaw ◽  
Julie Ahringer ◽  
...  

Cyclin-dependent kinase (CDK) plays a vital role in proliferation control across eukaryotes. Despite this, how CDK mediates cell cycle and developmental transitions in metazoa is poorly understood. In this paper, we identify orthologues of Sld2, a CDK target that is important for DNA replication in yeast, and characterize SLD-2 in the nematode worm Caenorhabditis elegans. We demonstrate that SLD-2 is required for replication initiation and the nuclear retention of a critical component of the replicative helicase CDC-45 in embryos. SLD-2 is a CDK target in vivo, and phosphorylation regulates the interaction with another replication factor, MUS-101. By mutation of the CDK sites in sld-2, we show that CDK phosphorylation of SLD-2 is essential in C. elegans. Finally, using a phosphomimicking sld-2 mutant, we demonstrate that timely CDK phosphorylation of SLD-2 is an important control mechanism to allow normal proliferation in the germline. These results determine an essential function of CDK in metazoa and identify a developmental role for regulated SLD-2 phosphorylation.


2002 ◽  
Vol 22 (19) ◽  
pp. 6809-6819 ◽  
Author(s):  
Marta Prymakowska-Bosak ◽  
Robert Hock ◽  
Frédéric Catez ◽  
Jae-Hwan Lim ◽  
Yehudit Birger ◽  
...  

ABSTRACT Progression through mitosis is associated with reversible phosphorylation of many nuclear proteins including that of the high-mobility group N (HMGN) nucleosomal binding protein family. Here we use immunofluorescence and in vitro nuclear import studies to demonstrate that mitotic phosphorylation of the nucleosomal binding domain (NBD) of the HMGN1 protein prevents its reentry into the newly formed nucleus in late telophase. By microinjecting wild-type and mutant proteins into the cytoplasm of HeLa cells and expressing these proteins in HmgN1 −/− cells, we demonstrate that the inability to enter the nucleus is a consequence of phosphorylation and is not due to the presence of negative charges. Using affinity chromatography with recombinant proteins and nuclear extracts prepared from logarithmically growing or mitotically arrested cells, we demonstrate that phosphorylation of the NBD of HMGN1 promotes interaction with specific 14.3.3 isotypes. We conclude that mitotic phosphorylation of HMGN1 protein promotes interaction with 14.3.3 proteins and suggest that this interaction impedes the reentry of the proteins into the nucleus during telophase. Taken together with the results of previous studies, our results suggest a dual role for mitotic phosphorylation of HMGN1: abolishment of chromatin binding and inhibition of nuclear import.


2007 ◽  
Vol 18 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Katherine A. Braun ◽  
Linda L. Breeden

The minichromosome maintenance genes (MCM2-7) are transcribed at M/G1 just as the Mcm complex is imported into the nucleus to be assembled into prereplication complexes, during a period of low cyclin-dependent kinase (CDK) activity. The CDKs trigger DNA replication and prevent rereplication in part by exporting Mcm2-7 from the nucleus during S phase. We have found that repression of MCM2-7 transcription in a single cell cycle interferes with the nuclear import of Mcms in the subsequent M/G1 phase. This suggests that nascent Mcm proteins are preferentially imported into the nucleus. Consistent with this, we find that loss of CDK activity in G2/M is not sufficient for nuclear import, there is also a requirement for new protein synthesis. This requirement is not met by constitutive production of Cdc6 and does not involve synthesis of new transport machinery. The Mcm proteins generated in the previous cell cycle, which are unable to reaccumulate in the nucleus, are predominantly turned over by ubiquitin-mediated proteolysis in late mitosis/early G1. Therefore, the nuclear localization of Mcm2-7 is dependent on nascent transcription and translation of Mcm2-7 and the elimination of CDK activity which occurs simultaneously as cells enter G1.


2011 ◽  
Vol 193 (7) ◽  
pp. 1157-1166 ◽  
Author(s):  
Gary W. Kerr ◽  
Sourav Sarkar ◽  
Katherine L. Tibbles ◽  
Mark Petronczki ◽  
Jonathan B.A. Millar ◽  
...  

During meiosis, one round of deoxyribonucleic acid replication is followed by two rounds of nuclear division. In Saccharomyces cerevisiae, activation of the Cdc14 early anaphase release (FEAR) network is required for exit from meiosis I but does not lead to the activation of origins of replication. The precise mechanism of how FEAR regulates meiosis is not understood. In this paper, we report that premature activation of FEAR during meiosis caused by loss of protein phosphatase PP2ACdc55 activity blocks bipolar spindle assembly and nuclear divisions. In cdc55 meiotic null (cdc55-mn) cells, the cyclin-dependent kinase (Cdk)–counteracting phosphatase Cdc14 was released prematurely from the nucleolus concomitant with hyperphosphorylation of its nucleolar anchor protein Net1. Crucially, a mutant form of Net1 that lacks six Cdk phosphorylation sites rescued the meiotic defect of cdc55-mn cells. Expression of a dominant mutant allele of CDC14 mimicked the cdc55-mn phenotype. We propose that phosphoregulation of Net1 by PP2ACdc55 is essential for preventing precocious exit from meiosis I.


2006 ◽  
Vol 399 (1) ◽  
pp. 151-160 ◽  
Author(s):  
Chantelle Sedgwick ◽  
Matthew Rawluk ◽  
James Decesare ◽  
Sheetal Raithatha ◽  
James Wohlschlegel ◽  
...  

The initiation of DNA replication in Saccharomyces cerevisiae depends upon the destruction of the Clb–Cdc28 inhibitor Sic1. In proliferating cells Cln–Cdc28 complexes phosphorylate Sic1, which stimulates binding of Sic1 to SCFCdc4 and triggers its proteosome mediated destruction. During sporulation cyclins are not expressed, yet Sic1 is still destroyed at the G1-/S-phase boundary. The Cdk (cyclin dependent kinase) sites are also required for Sic1 destruction during sporulation. Sic1 that is devoid of Cdk phosphorylation sites displays increased stability and decreased phosphorylation in vivo. In addition, we found that Sic1 was modified by ubiquitin in sporulating cells and that SCFCdc4 was required for this modification. The meiosis-specific kinase Ime2 has been proposed to promote Sic1 destruction by phosphorylating Sic1 in sporulating cells. We found that Ime2 phosphorylates Sic1 at multiple sites in vitro. However, only a subset of these sites corresponds to Cdk sites. The identification of multiple sites phosphorylated by Ime2 has allowed us to propose a motif for phosphorylation by Ime2 (PXS/T) where serine or threonine acts as a phospho-acceptor. Although Ime2 phosphorylates Sic1 at multiple sites in vitro, the modified Sic1 fails to bind to SCFCdc4. In addition, the expression of Ime2 in G1 arrested haploid cells does not promote the destruction of Sic1. These data support a model where Ime2 is necessary but not sufficient to promote Sic1 destruction during sporulation.


1998 ◽  
Vol 9 (9) ◽  
pp. 2393-2405 ◽  
Author(s):  
Masafumi Nishizawa ◽  
Masaoki Kawasumi ◽  
Marie Fujino ◽  
Akio Toh-e

In the yeast Saccharomyces cerevisiae, Sic1, an inhibitor of Clb-Cdc28 kinases, must be phosphorylated and degraded in G1for cells to initiate DNA replication, and Cln-Cdc28 kinase appears to be primarily responsible for phosphorylation of Sic1. The Pho85 kinase is a yeast cyclin-dependent kinase (Cdk), which is not essential for cell growth unless both CLN1 andCLN2 are absent. We demonstrate that Pho85, when complexed with Pcl1, a G1cyclin homologue, can phosphorylate Sic1 in vitro, and that Sic1 appears to be more stable inpho85Δ cells. Three consensus Cdk phosphorylation sites present in Sic1 are phosphorylated in vivo, and two of them are required for prompt degradation of the inhibitor. Pho85 and other G1Cdks appear to phosphorylate Sic1 at different sites in vivo. Thus at least two distinct Cdks can participate in phosphorylation of Sic1 and may therefore regulate progression through G1.


2002 ◽  
Vol 76 (18) ◽  
pp. 9505-9515 ◽  
Author(s):  
Victoria A. Olson ◽  
Justin A. Wetter ◽  
Paul D. Friesen

ABSTRACT Immediate-early protein IE1 is a principal regulator of viral transcription and a contributor to origin-specific DNA replication of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Since these viral functions involve interaction of dimeric IE1 with palindromic homologous region (hr) enhancer-origin elements of the AcMNPV genome within the nucleus, it is presumed that proper nuclear transport of IE1 is essential for productive infection. To investigate the mechanisms of IE1 nuclear import, we analyzed the effect of site-directed mutations on IE1 subcellular distribution. As demonstrated by fluorescence microscopy and biochemical fractionation of plasmid-transfected cells, wild-type IE1 localized predominantly to the nucleus. Substitution or deletion of amino acid residues within a positively charged domain (residues 534 to 538) adjacent to IE1's oligomerization motif impaired nuclear import and caused loss of transactivation. Moreover, upon coexpression, these import-defective mutations prevented nuclear entry of wild-type IE1. In contrast, double-mutated IE1 defective for both nuclear import and dimerization failed to block nuclear entry or transactivation by wild-type IE1. Thus, import-defective IE1 dominantly interfered with wild-type IE1 by direct interaction and cytosolic trapping. Collectively, our data indicate that the small basic domain encompassing residues R537 and R538 constitutes a novel nuclear localization element that functions only upon IE1 dimerization. These findings support a model wherein IE1 oligomerizes within the cytosol as a prerequisite for nuclear entry and subsequent high-affinity interaction with the symmetrical binding sites comprising AcMNPV hr enhancer-origin elements.


2005 ◽  
Vol 79 (14) ◽  
pp. 9244-9253 ◽  
Author(s):  
Jacqueline Lehmann-Che ◽  
Marie-Lou Giron ◽  
Olivier Delelis ◽  
Martin Löchelt ◽  
Patricia Bittoun ◽  
...  

ABSTRACT Although retrovirus egress and budding have been partly unraveled, little is known about early stages of the replication cycle. In particular, retroviral uncoating, a process during which incoming retroviral cores are altered to allow the integration of the viral genome into host chromosomes, is poorly understood. To get insights into these early events of the retroviral cycle, we have used foamy complex retroviruses as a model. In this report, we show that a protease-defective foamy retrovirus is noninfectious, although it is still able to bud and enter target cells efficiently. Similarly, a retrovirus mutated in an essential viral protease-dependent cleavage site in the central part of Gag is noninfectious. Following entry, wild-type and mutant retroviruses are able to traffic along microtubules towards the microtubule-organizing center (MTOC). However, whereas nuclear import of Gag and of the viral genome was observed for the wild-type virus as early as 8 hours postinfection, incoming capsids and genome from mutant viruses remained at the MTOC. Interestingly, a specific viral protease-dependent Gag cleavage product was detected only for the wild-type retrovirus early after infection, demonstrating that cleavage of Gag by the viral protease at this stage of the virus life cycle is absolutely required for productive infection, an unprecedented observation among retroviruses.


2006 ◽  
Vol 26 (3) ◽  
pp. 1098-1108 ◽  
Author(s):  
Masayoshi Iizuka ◽  
Tomoko Matsui ◽  
Haruhiko Takisawa ◽  
M. Mitchell Smith

ABSTRACT The initiation of DNA replication is tightly regulated in eukaryotic cells to ensure that the genome is precisely duplicated once and only once per cell cycle. This is accomplished by controlling the assembly of a prereplicative complex (pre-RC) which involves the sequential binding to replication origins of the origin recognition complex (ORC), Cdc6/Cdc18, Cdt1, and the minichromosome maintenance complex (Mcm2-Mcm7, or Mcm2-7). Several mechanisms of pre-RC regulation are known, including ATP utilization, cyclin-dependent kinase levels, protein turnover, and Cdt1 binding by geminin. Histone acetylation may also affect the initiation of DNA replication, but at present neither the enzymes nor the steps involved are known. Here, we show that Hbo1, a member of the MYST histone acetyltransferase family, is a previously unrecognized positive regulatory factor for pre-RC assembly. When Hbo1 expression was inhibited in human cells, Mcm2-7 failed to associate with chromatin even though ORC and Cdc6 loading was normal. When Xenopus egg extracts were immunodepleted of Xenopus Hbo1 (XHbo1), chromatin binding of Mcm2-7 was lost, and DNA replication was abolished. The binding of Mcm2-7 to chromatin in XHbo1-depleted extracts could be restored by the addition of recombinant Cdt1.


Sign in / Sign up

Export Citation Format

Share Document