scholarly journals NHERF Links the N-Cadherin/Catenin Complex to the Platelet-derived Growth Factor Receptor to Modulate the Actin Cytoskeleton and Regulate Cell Motility

2007 ◽  
Vol 18 (4) ◽  
pp. 1220-1232 ◽  
Author(s):  
Christopher S. Theisen ◽  
James K. Wahl ◽  
Keith R. Johnson ◽  
Margaret J. Wheelock

Using phage display, we identified Na+/H+ exchanger regulatory factor (NHERF)-2 as a novel binding partner for the cadherin-associated protein, β-catenin. We showed that the second of two PSD-95/Dlg/ZO-1 (PDZ) domains of NHERF interacts with a PDZ-binding motif at the very carboxy terminus of β-catenin. N-cadherin expression has been shown to induce motility in a number of cell types. The first PDZ domain of NHERF is known to bind platelet-derived growth factor-receptor β (PDGF-Rβ), and the interaction of PDGF-Rβ with NHERF leads to enhanced cell spreading and motility. Here we show that β-catenin and N-cadherin are in a complex with NHERF and PDGF-Rβ at membrane ruffles in the highly invasive fibrosarcoma cell line HT1080. Using a stable short hairpin RNA system, we showed that HT1080 cells knocked down for either N-cadherin or NHERF had impaired ability to migrate into the wounded area in a scratch assay, similar to cells treated with a PDGF-R kinase inhibitor. Cells expressing a mutant NHERF that is unable to associate with β-catenin had increased stress fibers, reduced lamellipodia, and impaired cell migration. Using HeLa cells, which express little to no PDGF-R, we introduced PDGF-Rβ and showed that it coimmunoprecipitates with N-cadherin and that PDGF-dependent cell migration was reduced in these cells when we knocked-down expression of N-cadherin or NHERF. These studies implicate N-cadherin and β-catenin in cell migration via PDGF-R–mediated signaling through the scaffolding molecule NHERF.

2000 ◽  
Vol 20 (22) ◽  
pp. 8352-8363 ◽  
Author(s):  
Stuart Maudsley ◽  
A. Musa Zamah ◽  
Nadeem Rahman ◽  
Jeremy T. Blitzer ◽  
Louis M. Luttrell ◽  
...  

ABSTRACT Platelet-derived growth factor (PDGF) is a potent mitogen for many cell types. The PDGF receptor (PDGFR) is a receptor tyrosine kinase that mediates the mitogenic effects of PDGF by binding to and/or phosphorylating a variety of intracellular signaling proteins upon PDGF-induced receptor dimerization. We show here that the Na+/H+ exchanger regulatory factor (NHERF; also known as EBP50), a protein not previously known to interact with the PDGFR, binds to the PDGFR carboxyl terminus (PDGFR-CT) with high affinity via a PDZ (PSD-95/Dlg/Z0-1 homology) domain-mediated interaction and potentiates PDGFR autophosphorylation and extracellular signal-regulated kinase (ERK) activation in cells. A point-mutated version of the PDGFR, with the terminal leucine changed to alanine (L1106A), cannot bind NHERF in vitro and is markedly impaired relative to the wild-type receptor with regard to PDGF-induced autophosphorylation and activation of ERK in cells. NHERF potentiation of PDGFR signaling depends on the capacity of NHERF to oligomerize. NHERF oligomerizes in vitro when bound with PDGFR-CT, and a truncated version of the first NHERF PDZ domain that can bind PDGFR-CT but which does not oligomerize reduces PDGFR tyrosine kinase activity when transiently overexpressed in cells. PDGFR activity in cells can also be regulated in a NHERF-dependent fashion by stimulation of the β2-adrenergic receptor, a known cellular binding partner for NHERF. These findings reveal that NHERF can directly bind to the PDGFR and potentiate PDGFR activity, thus elucidating both a novel mechanism by which PDGFR activity can be regulated and a new cellular role for the PDZ domain-containing adapter protein NHERF.


1999 ◽  
Vol 274 (23) ◽  
pp. 16619-16628 ◽  
Author(s):  
Sachiko Miyake ◽  
Karen P. Mullane-Robinson ◽  
Nancy L. Lill ◽  
Patrice Douillard ◽  
Hamid Band

2009 ◽  
Vol 202 (2) ◽  
pp. 309-316 ◽  
Author(s):  
Keisuke Ishizawa ◽  
Narantungalag Dorjsuren ◽  
Yuki Izawa-Ishizawa ◽  
Rika Sugimoto ◽  
Yasumasa Ikeda ◽  
...  

Adiponectin, an adipocyte-derived hormone, has been involved in metabolic syndrome, a known risk factor for the development of chronic kidney disease (CKD). Recent studies have demonstrated that plasma adiponectin levels are elevated when kidney function declines in patients with CKD. Excessive mesangial cell (MC) turnover is one of the important features of CKD. The aim of the present study is to elucidate the effects of adiponectin on platelet-derived growth factor (PDGF)-induced cell migration and intracellular signaling pathways, in cultured rat MCs (RMCs). PDGF-induced RMC migration was significantly inhibited by the pretreatment of adiponectin. Adiponectin alone had no effect on RMC migration. Big mitogen-activated protein (MAP) kinase 1 (BMK1), p38 MAP kinase, and Akt were activated by PDGF stimulation in a time- and concentration-dependent manner in RMC. Adiponectin alone did not affect BMK1, p38 MAP kinase, and Akt phosphorylations in RMC. PDGF-induced BMK1 and p38 MAP kinase phosphorylations were significantly attenuated by the pretreatment of adiponectin in RMCs. On the other hand, the phosphorylation of Akt by PDGF was not diminished by the pretreatment of adiponectin. Adiponectin had no effects on PDGF-receptor autophosphorylation by PDGF. We also confirmed that PDGF-induced RMC migration was significantly suppressed by siBMK1 transfection or SB203580, a p38 MAP kinase inhibitor. From these findings, it is implied that the elevated plasma adiponectin levels in patients with CKD might play a compensatory role aimed at counteracting renal dysfunction related to MC disorders.


Sign in / Sign up

Export Citation Format

Share Document