scholarly journals The Actomyosin Ring Recruits Early Secretory Compartments to the Division Site in Fission Yeast

2008 ◽  
Vol 19 (3) ◽  
pp. 1125-1138 ◽  
Author(s):  
Aleksandar Vjestica ◽  
Xin-Zi Tang ◽  
Snezhana Oliferenko

The ultimate goal of cytokinesis is to establish a membrane barrier between daughter cells. The fission yeast Schizosaccharomyces pombe utilizes an actomyosin-based division ring that is thought to provide physical force for the plasma membrane invagination. Ring constriction occurs concomitantly with the assembly of a division septum that is eventually cleaved. Membrane trafficking events such as targeting of secretory vesicles to the division site require a functional actomyosin ring suggesting that it serves as a spatial landmark. However, the extent of polarization of the secretion apparatus to the division site is presently unknown. We performed a survey of dynamics of several fluorophore-tagged proteins that served as markers for various compartments of the secretory pathway. These included markers for the endoplasmic reticulum, the COPII sites, and the early and late Golgi. The secretion machinery exhibited a marked polarization to the division site. Specifically, we observed an enrichment of the transitional endoplasmic reticulum (tER) accompanied by Golgi cisternae biogenesis. These processes required actomyosin ring assembly and the function of the EFC-domain protein Cdc15p. Cdc15p overexpression was sufficient to induce tER polarization in interphase. Thus, fission yeast polarizes its entire secretory machinery to the cell division site by utilizing molecular cues provided by the actomyosin ring.

2019 ◽  
Author(s):  
Udo N. Onwubiko ◽  
Julie Robinson ◽  
Rose Albu Mustaf ◽  
Maitreyi E. Das

AbstractCytokinesis in fission yeast involves actomyosin ring constriction concurrent to septum synthesis followed by septum digestion resulting in cell separation. A recent report indicates that endocytosis is required for septum synthesis and cell separation. The conserved GTPase Cdc42 is required for membrane trafficking and promotes endocytosis. Cdc42 is activated by Guanine nucleotide exchange factors (GEFs). Cdc42 GEFs have been shown to promote timely initiation of septum synthesis and proper septum morphology. Here we show that Cdc42 promotes the recruitment of the major primary septum synthesizing enzyme Bgs1 and consequent ring constriction. Cdc42 is also required for proper localization of the septum digesting glucanases at the division site. Thus, Cdc42 is required to promote multiple steps during cytokinesis.


2004 ◽  
Vol 15 (2) ◽  
pp. 481-496 ◽  
Author(s):  
Josefa Andrade ◽  
Hu Zhao ◽  
Brian Titus ◽  
Sandra Timm Pearce ◽  
Margarida Barroso

We have reported that p22, an N-myristoylated EF-hand Ca2+-binding protein, associates with microtubules and plays a role in membrane trafficking. Here, we show that p22 also associates with membranes of the early secretory pathway membranes, in particular endoplasmic reticulum (ER). On binding of Ca2+, p22's ability to associate with membranes increases in an N-myristoylation-dependent manner, which is suggestive of a nonclassical Ca2+-myristoyl switch mechanism. To address the intracellular functions of p22, a digitonin-based “bulk microinjection” assay was developed to load cells with anti-p22, wild-type, or mutant p22 proteins. Antibodies against a p22 peptide induce microtubule depolymerization and ER fragmentation; this antibody-mediated effect is overcome by preincubation with the respective p22 peptide. In contrast, N-myristoylated p22 induces the formation of microtubule bundles, the accumulation of ER structures along the bundles as well as an increase in ER network formation. An N-myristoylated Ca2+-binding p22 mutant, which is unable to undergo Ca2+-mediated conformational changes, induces microtubule bundling and accumulation of ER structures along the bundles but does not increase ER network formation. Together, these data strongly suggest that p22 modulates the organization and dynamics of microtubule cytoskeleton in a Ca2+-independent manner and affects ER network assembly in a Ca2+-dependent manner.


2012 ◽  
Vol 23 (7) ◽  
pp. 1181-1195 ◽  
Author(s):  
Yanfang Ye ◽  
I-Ju Lee ◽  
Kurt W. Runge ◽  
Jian-Qiu Wu

Cytokinesis is crucial for integrating genome inheritance and cell functions. In multicellular organisms, Rho-guanine nucleotide exchange factors (GEFs) and Rho GTPases are key regulators of division-plane specification and contractile-ring formation during cytokinesis, but how they regulate early steps of cytokinesis in fission yeast remains largely unknown. Here we show that putative Rho-GEF Gef2 and Polo kinase Plo1 coordinate to control the medial cortical localization and function of anillin-related protein Mid1. The division-site positioning defects of gef2∆ plo1-ts18 double mutant can be partially rescued by increasing Mid1 levels. We find that Gef2 physically interacts with the Mid1 N-terminus and modulates Mid1 cortical binding. Gef2 localization to cortical nodes and the contractile ring depends on its last 145 residues, and the DBL-homology domain is important for its function in cytokinesis. Our data suggest the interaction between Rho-GEFs and anillins is an important step in the signaling pathways during cytokinesis. In addition, Gef2 also regulates contractile-ring function late in cytokinesis and may negatively regulate the septation initiation network. Collectively, we propose that Gef2 facilitates and stabilizes Mid1 binding to the medial cortex, where the localized Mid1 specifies the division site and induces contractile-ring assembly.


2002 ◽  
Vol 13 (3) ◽  
pp. 989-1000 ◽  
Author(s):  
Jianhua Liu ◽  
Xie Tang ◽  
Hongyan Wang ◽  
Snezhana Oliferenko ◽  
Mohan K. Balasubramanian

Schizosaccharomyces pombe cells divide by medial fission through the use of an actomyosin-based contractile ring. Constriction of the actomyosin ring is accompanied by the centripetal addition of new membranes and cell wall material. In this article, we characterize the mechanism responsible for the localization of Cps1p, a septum-synthesizing 1,3-β-glucan synthase, to the division site during cytokinesis. We show that Cps1p is an integral membrane protein that localizes to the cell division site late in anaphase. Neither F-actin nor microtubules are essential for the initial assembly of Cps1p to the medial division site. F-actin, but not microtubules, is however important for the eventual incorporation of Cps1p into the actomyosin ring. Assembly of Cps1p into the cell division ring is also dependent on the septation-inducing network (SIN) proteins that regulate division septum formation after assembly of the actomyosin ring. Fluorescence-recovery after-photobleaching experiments reveal that Cps1p does not diffuse appreciably within the plasma membrane and is retained at the division site by a mechanism that does not depend on an intact F-actin cytoskeleton. We conclude that the actomyosin ring serves as a spatial cue for Cps1p localization, whereas the maintenance of Cps1p at the division site occurs by a novel F-actin– and microtubule-independent mechanism. Furthermore, we propose that the SIN proteins ensure localization of Cps1p at the appropriate point in the cell cycle.


2005 ◽  
Vol 16 (5) ◽  
pp. 2313-2324 ◽  
Author(s):  
David R. Kovar ◽  
Jian-Qiu Wu ◽  
Thomas D. Pollard

Fission yeast capping protein SpCP is a heterodimer of two subunits (Acp1p and Acp2p) that binds actin filament barbed ends. Neither acp1 nor acp2 is required for viability, but cells lacking either or both subunits have cytokinesis defects under stressful conditions, including elevated temperature, osmotic stress, or in combination with numerous mild mutations in genes important for cytokinesis. Defects arise as the contractile ring constricts and disassembles, resulting in delays in cell separation. Genetic and biochemical interactions show that the cytokinesis formin Cdc12p competes with capping protein for actin filament barbed ends in cells. Deletion of acp2 partly suppresses cytokinesis defects in temperature-sensitive cdc12-112 cells and mild overexpression of capping protein kills cdc12-112 cells. Biochemically, profilin has opposite effects on filaments capped with Cdc12p and capping protein. Profilin depolymerizes actin filaments capped by capping protein but allows filaments capped by Cdc12p to grow at their barbed ends. Once associated with a barbed end, either Cdc12p or capping protein prevents the other from influencing polymerization at that end. Given that capping protein arrives at the division site 20 min later than Cdc12p, capping protein may slowly replace Cdc12p on filament barbed ends in preparation for filament disassembly during ring constriction.


2016 ◽  
Vol 27 (8) ◽  
pp. 1235-1245 ◽  
Author(s):  
Bin Wei ◽  
Brian S. Hercyk ◽  
Nicholas Mattson ◽  
Ahmad Mohammadi ◽  
Julie Rich ◽  
...  

The Rho-family GTPase Cdc42 regulates cell polarity and localizes to the cell division site. Cdc42 is activated by guanine nucleotide exchange factors (GEFs). We report that Cdc42 promotes cytokinesis via a unique spatiotemporal activation pattern due to the distinct action of its GEFs, Gef1 and Scd1, in fission yeast. Before cytokinetic ring constriction, Cdc42 activation, is Gef1 dependent, and after ring constriction, it is Scd1 dependent. Gef1 localizes to the actomyosin ring immediately after ring assembly and promotes timely onset of ring constriction. Gef1 is required for proper actin organization during cytokinesis, distribution of type V myosin Myo52 to the division site, and timely recruitment of septum protein Bgs1. In contrast, Scd1 localizes to the broader region of ingressing membrane during cytokinetic furrowing. Scd1 promotes normal septum formation, and scd1Δ cells display aberrant septa with reduced Bgs1 localization. Thus we define unique roles of the GEFs Gef1 and Scd1 in the regulation of distinct events during cytokinesis. Gef1 localizes first to the cytokinetic ring and promotes timely constriction, whereas Scd1 localizes later to the ingressing membrane and promotes septum formation. Our findings are consistent with reports that complexity in GTPase signaling patterns enables exquisite precision over the control of cellular processes.


1999 ◽  
Vol 146 (4) ◽  
pp. 777-790 ◽  
Author(s):  
Cynthia A. Sparks ◽  
Mary Morphew ◽  
Dannel McCollum

The fission yeast Schizosaccharomyces pombe divides by medial fission through the use of an actomyosin contractile ring. Precisely at the end of anaphase, the ring begins to constrict and the septum forms. Proper coordination of cell division with mitosis is crucial to ensure proper segregation of chromosomes to daughter cells. The Sid2p kinase is one of several proteins that function as part of a novel signaling pathway required for initiation of medial ring constriction and septation. Here, we show that Sid2p is a component of the spindle pole body at all stages of the cell cycle and localizes transiently to the cell division site during medial ring constriction and septation. A medial ring and an intact microtubule cytoskeleton are required for the localization of Sid2p to the division site. We have established an in vitro assay for measuring Sid2p kinase activity, and found that Sid2p kinase activity peaks during medial ring constriction and septation. Both Sid2p localization to the division site and activity depend on the function of all of the other septation initiation genes: cdc7, cdc11, cdc14, sid1, spg1, and sid4. Thus, Sid2p, a component of the spindle pole body, by virtue of its transient localization to the division site, appears to determine the timing of ring constriction and septum delivery in response to activating signals from other Sid gene products.


Microbiology ◽  
2006 ◽  
Vol 152 (4) ◽  
pp. 1129-1141 ◽  
Author(s):  
Yoshikazu Kawai ◽  
Naotake Ogasawara

Previous work has shown that the Bacillus subtilis EzrA protein directly inhibits FtsZ ring assembly, which is required for normal cell division, and that loss of EzrA results in hyperstabilization of the FtsZ polymer in vivo. Here, it was found that in ezrA-disrupted cells, artificial expression of YneA, which suppresses cell division during the SOS response, and disruption of noc (yyaA), which acts as an effector of nucleoid occlusion, resulted in accumulation of multiple non-constricting FtsZ rings, inhibition of cell division, and synthetic lethality. Overexpression of the essential cell division protein FtsL suppressed the effect of ezrA disruption. FtsL overexpression recovered the delayed FtsZ ring constriction seen in ezrA-disrupted wild-type cells. Conversely, the absence of EzrA caused lethality in cells producing a lower amount of FtsL than wild-type cells. It has previously been reported that FtsL is recruited to the division site during the later stages of cell division, although its exact role is currently unknown. The results of this study suggest that FtsL and EzrA synergistically regulate the FtsZ ring constriction in B. subtilis. Interestingly, FtsL overexpression also suppressed the cell division inhibition due to YneA expression or Noc inactivation in ezrA-disrupted cells.


2015 ◽  
Vol 43 (1) ◽  
pp. 117-121 ◽  
Author(s):  
Stefano Sechi ◽  
Anna Frappaolo ◽  
Giorgio Belloni ◽  
Maria Grazia Giansanti

Cytokinesis is an intricate process that requires an intimate interplay between actomyosin ring constriction and plasma membrane remodelling at the cleavage furrow. However, the molecular mechanisms involved in coupling the cytoskeleton dynamics with vesicle trafficking during cytokinesis are poorly understood. The highly conserved Golgi phosphoprotein 3 (GOLPH3), functions as a phosphatidylinositol 4-phosphate (PI4P) effector at the Golgi. Recent studies have suggested that GOLPH3 is up-regulated in several cancers and is associated with poor prognosis and more aggressive tumours. In Drosophila melanogaster, GOLPH3 localizes at the cleavage furrow of dividing cells, is required for successful cytokinesis and acts as a key molecule in coupling phosphoinositide (PI) signalling with actomyosin ring dynamics. Because cytokinesis failures have been linked with pre-malignant disease and cancer, the novel connection between GOLPH3 and cytokinesis imposes new fields of investigation in cancer biology and therapy.


2019 ◽  
Author(s):  
Brian S. Hercyk ◽  
Maitreyi E. Das

ABSTRACTCdc42, a Rho-family GTPase, is a master regulator of cell polarity. Recently it has been shown that Cdc42 also facilitates proper cytokinesis in the fission yeast,Schizosaccharomyces pombe. Cdc42 is activated by two partially redundant GEFs Gef1 and Scd1. Although both the GEFs activate Cdc42, their deletion mutants display distinct phenotypes, indicating that they are differentially regulated, by an unknown mechanism. During cytokinesis, Gef1 localizes to the division site and activates Cdc42 to initiate ring constriction and septum ingression. Here we report that the F-BAR domain containing Cdc15 promotes Gef1 localization to its functional sites. We show thatcdc15promotes Gef1 association with the cytokinetic nodes to activate Cdc42 during ring assembly. Moreover,cdc15phospho-mutants phenocopy polarity phenotypes ofgef1mutants. In a hypermorphiccdc15mutant, Gef1 localizes precociously to the division site, and is readily detected at the cortical patches and the cell cortex. Correspondingly, the hypermorphiccdc15mutant shows increased bipolarity during interphase and precocious Cdc42 activation at the division site during cytokinesis. Finally, loss ofgef1in hypermorphiccdc15mutants abrogates the increased bipolarity and precocious Cdc42 activation phenotype. We did not see any change in the localization of the other GEF Scd1 in a Cdc15-dependent manner. Taken together our data indicates that Cdc15 promotes Cdc42 activation specifically via Gef1 localization to the division site to facilitate proper cytokinesis and to the cell cortex to promote bipolarity.


Sign in / Sign up

Export Citation Format

Share Document