scholarly journals Bacillus subtilis EzrA and FtsL synergistically regulate FtsZ ring dynamics during cell division

Microbiology ◽  
2006 ◽  
Vol 152 (4) ◽  
pp. 1129-1141 ◽  
Author(s):  
Yoshikazu Kawai ◽  
Naotake Ogasawara

Previous work has shown that the Bacillus subtilis EzrA protein directly inhibits FtsZ ring assembly, which is required for normal cell division, and that loss of EzrA results in hyperstabilization of the FtsZ polymer in vivo. Here, it was found that in ezrA-disrupted cells, artificial expression of YneA, which suppresses cell division during the SOS response, and disruption of noc (yyaA), which acts as an effector of nucleoid occlusion, resulted in accumulation of multiple non-constricting FtsZ rings, inhibition of cell division, and synthetic lethality. Overexpression of the essential cell division protein FtsL suppressed the effect of ezrA disruption. FtsL overexpression recovered the delayed FtsZ ring constriction seen in ezrA-disrupted wild-type cells. Conversely, the absence of EzrA caused lethality in cells producing a lower amount of FtsL than wild-type cells. It has previously been reported that FtsL is recruited to the division site during the later stages of cell division, although its exact role is currently unknown. The results of this study suggest that FtsL and EzrA synergistically regulate the FtsZ ring constriction in B. subtilis. Interestingly, FtsL overexpression also suppressed the cell division inhibition due to YneA expression or Noc inactivation in ezrA-disrupted cells.

2005 ◽  
Vol 187 (18) ◽  
pp. 6536-6544 ◽  
Author(s):  
S. O. Jensen ◽  
L. S. Thompson ◽  
E. J. Harry

ABSTRACT The earliest stage in cell division in bacteria is the assembly of a Z ring at the division site at midcell. Other division proteins are also recruited to this site to orchestrate the septation process. FtsA is a cytosolic division protein that interacts directly with FtsZ. Its function remains unknown. It is generally believed that FtsA localization to the division site occurs immediately after Z-ring formation or concomitantly with it and that FtsA is responsible for recruiting the later-assembling membrane-bound division proteins to the division site. Here, we report the development of an in vivo chemical cross-linking assay to examine the association between FtsZ and FtsA in Bacillus subtilis cells. We subsequently use this assay in a synchronous cell cycle to show that these two proteins can interact prior to Z-ring formation. We further show that in a B. subtilis strain containing an ftsA deletion, FtsZ localized at regular intervals along the filament but the majority of Z rings were abnormal. FtsA in this organism is therefore critical for the efficient formation of functional Z rings. This is the first report of abnormal Z-ring formation resulting from the loss of a single septation protein. These results suggest that in this organism, and perhaps others, FtsA ensures recruitment of the membrane-bound division proteins by ensuring correct formation of the Z ring.


2002 ◽  
Vol 13 (3) ◽  
pp. 989-1000 ◽  
Author(s):  
Jianhua Liu ◽  
Xie Tang ◽  
Hongyan Wang ◽  
Snezhana Oliferenko ◽  
Mohan K. Balasubramanian

Schizosaccharomyces pombe cells divide by medial fission through the use of an actomyosin-based contractile ring. Constriction of the actomyosin ring is accompanied by the centripetal addition of new membranes and cell wall material. In this article, we characterize the mechanism responsible for the localization of Cps1p, a septum-synthesizing 1,3-β-glucan synthase, to the division site during cytokinesis. We show that Cps1p is an integral membrane protein that localizes to the cell division site late in anaphase. Neither F-actin nor microtubules are essential for the initial assembly of Cps1p to the medial division site. F-actin, but not microtubules, is however important for the eventual incorporation of Cps1p into the actomyosin ring. Assembly of Cps1p into the cell division ring is also dependent on the septation-inducing network (SIN) proteins that regulate division septum formation after assembly of the actomyosin ring. Fluorescence-recovery after-photobleaching experiments reveal that Cps1p does not diffuse appreciably within the plasma membrane and is retained at the division site by a mechanism that does not depend on an intact F-actin cytoskeleton. We conclude that the actomyosin ring serves as a spatial cue for Cps1p localization, whereas the maintenance of Cps1p at the division site occurs by a novel F-actin– and microtubule-independent mechanism. Furthermore, we propose that the SIN proteins ensure localization of Cps1p at the appropriate point in the cell cycle.


2020 ◽  
Author(s):  
Amit Bhambhani ◽  
Isabella Iadicicco ◽  
Jules Lee ◽  
Syed Ahmed ◽  
Max Belfatto ◽  
...  

ABSTRACTPrevious work identified gp56, encoded by the lytic bacteriophage SP01, as responsible for inhibition of Bacillus subtilis cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis. Here we show that expression of the predicted 9.3-kDa gene product 56 (gp56) of SP01 inhibits latter stages of B. subtilis cell division without altering FtsZ ring assembly. GFP-tagged gp56 localizes to the membrane at the site of division. While its localization permits recruitment of early division proteins, gp56 interferes with the recruitment of late division proteins, including Pbp2b and FtsW. Imaging of cells with specific division components deleted or depleted and two-hybrid analysis suggest that gp56 localization and activity depends on its interaction with mid-recruited proteins DivIC and/or FtsL. Together these data support a model where gp56 interacts with a central part of the division machinery to disrupt late recruitment of the division proteins involved in septal cell wall synthesis.IMPORTANCEResearch over the past decades has uncovered bacteriophage-encoded factors that interfere with host cell shape or cytokinesis during viral infection. Phage factors that cause cell filamentation that have been investigated to date all act by targeting FtsZ, the conserved prokaryotic tubulin homolog that composes the cytokinetic ring in most bacteria and some groups of archaea. However, the mechanism of several identified phage factors that inhibit cytokinesis remain unexplored, including gp56 of bacteriophage SP01 of Bacillus subtilis. Here, we show that unlike related published examples of phage inhibition of cyotkinesis, gp56 blocks B. subtilis cell division without targeting FtsZ. Rather, it utilizes the assembled FtsZ cytokinetic ring to localize to the division machinery and block recruitment of proteins needed for the septal cell wall synthesis.


2018 ◽  
Vol 201 (4) ◽  
Author(s):  
Christopher J. LaBreck ◽  
Joseph Conti ◽  
Marissa G. Viola ◽  
Jodi L. Camberg

ABSTRACTThe Min system inEscherichia coli, consisting of MinC, MinD, and MinE proteins, regulates division site selection by preventing assembly of the FtsZ-ring (Z-ring) and exhibits polar oscillationin vivo. MinC antagonizes FtsZ polymerization, andin vivo, the cellular location of MinC is controlled by a direct association with MinD at the membrane. To further understand the interactions of MinC with FtsZ and MinD, we performed a mutagenesis screen to identify substitutions inminCthat are associated with defects in cell division. We identified amino acids in both the N- and C-domains of MinC that are important for direct interactions with FtsZ and MinDin vitro, as well as mutations that modify the observedin vivooscillation of green fluorescent protein (GFP)-MinC. Our results indicate that there are two distinct surface-exposed sites on MinC that are important for direct interactions with FtsZ, one at a cleft on the surface of the N-domain and a second on the C-domain that is adjacent to the MinD interaction site. Mutation of either of these sites leads to slower oscillation of GFP-MinCin vivo, although the MinC mutant proteins are still capable of a direct interaction with MinD in phospholipid recruitment assays. Furthermore, we demonstrate that interactions between FtsZ and both sites of MinC identified here are important for assembly of FtsZ-MinC-MinD complexes and that the conserved C-terminal end of FtsZ is not required for MinC-MinD complex formation with GTP-dependent FtsZ polymers.IMPORTANCEBacterial cell division proceeds through the coordinated assembly of the FtsZ-ring, or Z-ring, at the site of division. Assembly of the Z-ring requires polymerization of FtsZ, which is regulated by several proteins in the cell. InEscherichia coli, the Min system, which contains MinC, MinD, and MinE proteins, exhibits polar oscillation and inhibits the assembly of FtsZ at nonseptal locations. Here, we identify regions on the surface of MinC that are important for contacting FtsZ and destabilizing FtsZ polymers.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nadine Silber ◽  
Christian Mayer ◽  
Cruz L. Matos de Opitz ◽  
Peter Sass

AbstractCell division is a central and essential process in most bacteria, and also due to its complexity and highly coordinated nature, it has emerged as a promising new antibiotic target pathway in recent years. We have previously shown that ADEP antibiotics preferably induce the degradation of the major cell division protein FtsZ, thereby primarily leading to a depletion of the cytoplasmic FtsZ pool that is needed for treadmilling FtsZ rings. To further investigate the physiological consequences of ADEP treatment, we here studied the effect of ADEP on the different stages of the FtsZ ring in rod-shaped bacteria. Our data reveal the disintegration of early FtsZ rings during ADEP treatment in Bacillus subtilis, indicating an essential role of the cytoplasmic FtsZ pool and thus FtsZ ring dynamics during initiation and maturation of the divisome. However, progressed FtsZ rings finalized cytokinesis once the septal peptidoglycan synthase PBP2b, a late-stage cell division protein, colocalized at the division site, thus implying that the concentration of the cytoplasmic FtsZ pool and FtsZ ring dynamics are less critical during the late stages of divisome assembly and progression.


1998 ◽  
Vol 180 (13) ◽  
pp. 3486-3490 ◽  
Author(s):  
Joe Pogliano ◽  
Jian Ming Dong ◽  
Peter De Wulf ◽  
Dierdre Furlong ◽  
Dana Boyd ◽  
...  

ABSTRACT In Escherichia coli, certain mutations in thecpxA gene (encoding a sensor kinase of a two-component signal transduction system) randomize the location of FtsZ ring assembly and dramatically affect cell division. However, deletion of the cpxRA operon, encoding the sensor kinase and its cognate regulator CpxR, has no effect on division site biogenesis. It appears that certain mutant sensor kinases (CpxA*) either exhibit hyperactivity on CpxR or extend their signalling activity to one or more noncognate response regulators involved in cell division.


Author(s):  
Nadine Silber ◽  
Christian Mayer ◽  
Cruz L Matos de Opitz ◽  
Peter Sass

AbstractADEP antibiotics induce the degradation of the cell division protein FtsZ, thereby primarily depleting the cytoplasmic FtsZ pool that is needed for treadmilling FtsZ rings. We here studied the effect of ADEP on FtsZ ring formation. Our data reveal the disintegration of early FtsZ rings during ADEP treatment, while progressed FtsZ rings finalize cytokinesis, thus indicating different roles for FtsZ treadmilling during distinct stages of divisome assembly and constriction.


2021 ◽  
Vol 85 (2) ◽  
pp. 297-306
Author(s):  
Zui Fujimoto ◽  
Le Thi Thu Hong ◽  
Naomi Kishine ◽  
Nobuhiro Suzuki ◽  
Keitarou Kimura

ABSTRACT Bacillus subtilis YabJ protein belongs to the highly conserved YjgF/YER057c/UK114 family, which has a homotrimeric quaternary structure. The dominant allele of yabJ gene that is caused by a single amino acid mutation of Ser103Phe enables poly-γ-glutamic acid (γPGA) production of B. subtilis under conditions where the cell-density signal transduction was disturbed by the loss of DegQ function. X-ray crystallography of recombinant proteins revealed that unlike the homotrimeric wild-type YabJ, the mutant YabJ(Ser103Phe) had a homotetrameric quaternary structure, and the structural change appeared to be triggered by an inversion of the fifth β-strand. The YabJ homotetramer has a hole that is highly accessible, penetrating through the tetramer, and 2 surface concaves as potential ligand-binding sites. Western blot analyses revealed that the conformational change was also induced in vivo by the Ser103Phe mutation.


2020 ◽  
Vol 203 (2) ◽  
pp. e00463-20
Author(s):  
Amit Bhambhani ◽  
Isabella Iadicicco ◽  
Jules Lee ◽  
Syed Ahmed ◽  
Max Belfatto ◽  
...  

ABSTRACTPrevious work identified gene product 56 (gp56), encoded by the lytic bacteriophage SP01, as being responsible for inhibition of Bacillus subtilis cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis. Here, we show that expression of the predicted 9.3-kDa gp56 of SP01 inhibits later stages of B. subtilis cell division without altering FtsZ ring assembly. Green fluorescent protein-tagged gp56 localizes to the membrane at the site of division. While its localization does not interfere with recruitment of early division proteins, gp56 interferes with the recruitment of late division proteins, including Pbp2b and FtsW. Imaging of cells with specific division components deleted or depleted and two-hybrid analyses suggest that gp56 localization and activity depend on its interaction with FtsL. Together, these data support a model in which gp56 interacts with a central part of the division machinery to disrupt late recruitment of the division proteins involved in septal cell wall synthesis.IMPORTANCE Studies over the past decades have identified bacteriophage-encoded factors that interfere with host cell shape or cytokinesis during viral infection. The phage factors causing cell filamentation that have been investigated to date all act by targeting FtsZ, the conserved prokaryotic tubulin homolog that composes the cytokinetic ring in most bacteria and some groups of archaea. However, the mechanisms of several phage factors that inhibit cytokinesis, including gp56 of bacteriophage SP01 of Bacillus subtilis, remain unexplored. Here, we show that, unlike other published examples of phage inhibition of cytokinesis, gp56 blocks B. subtilis cell division without targeting FtsZ. Rather, it utilizes the assembled FtsZ cytokinetic ring to localize to the division machinery and to block recruitment of proteins needed for septal cell wall synthesis.


2000 ◽  
Vol 182 (14) ◽  
pp. 3965-3971 ◽  
Author(s):  
Zonglin Hu ◽  
Joe Lutkenhaus

ABSTRACT In Escherichia coli FtsZ assembles into a Z ring at midcell while assembly at polar sites is prevented by themin system. MinC, a component of this system, is an inhibitor of FtsZ assembly that is positioned within the cell by interaction with MinDE. In this study we found that MinC consists of two functional domains connected by a short linker. When fused to MalE the N-terminal domain is able to inhibit cell division and prevent FtsZ assembly in vitro. The C-terminal domain interacts with MinD, and expression in wild-type cells as a MalE fusion disrupts minfunction, resulting in a minicell phenotype. We also find that MinC is an oligomer, probably a dimer. Although the C-terminal domain is clearly sufficient for oligomerization, the N-terminal domain also promotes oligomerization. These results demonstrate that MinC consists of two independently functioning domains: an N-terminal domain capable of inhibiting FtsZ assembly and a C-terminal domain responsible for localization of MinC through interaction with MinD. The fusion of these two independent domains is required to achieve topological regulation of Z ring assembly.


Sign in / Sign up

Export Citation Format

Share Document