scholarly journals Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana

2013 ◽  
Vol 24 (4) ◽  
pp. 510-520 ◽  
Author(s):  
Matyáš Fendrych ◽  
Lukáš Synek ◽  
Tamara Pečenková ◽  
Edita Janková Drdová ◽  
Juraj Sekereš ◽  
...  

The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6–green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering.

Endocrinology ◽  
2013 ◽  
Vol 154 (3) ◽  
pp. 1235-1246 ◽  
Author(s):  
Matjaž Stenovec ◽  
Paula P. Gonçalves ◽  
Robert Zorec

Abstract In this study we used live-cell immunocytochemistry and confocal microscopy to study the release from a single vesicle in a simplified system called membrane lawns. The lawns were prepared by exposing differentiated pituitary prolactin (PRL)-secreting cells to a hypoosmotic shear stress. The density of the immunolabeled ternary soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complexes that bind complexin was approximately 10 times lower than the PRL-positive, lawn-resident vesicles; this indicates that some but not all vesicles are associated with ternary SNARE complexes. However, lawn-resident PRL vesicles colocalized relatively well with particular SNARE proteins: synaptobrevin 2 (35%), syntaxin 1 (22%), and 25-kDa synaptosome associated protein (6%). To study vesicle discharge, we prepared lawn-resident vesicles, derived from atrial natriuretic peptide tagged with emerald fluorescent protein (ANP.emd)-transfected cells, which label vesicles. These maintained the structural passage to the exterior because approximately 40% of ANP.emd-loaded vesicles were labeled by extracellular PRL antibodies. Cargo release from the lawn-resident vesicles, monitored by the decline in the ANP.emd fluorescence intensity, was similar to that in intact cells. It is likely that SNARE proteins are required for calcium-dependent release from these vesicles. This is because the expression of the dominant-negative SNARE peptide, which interferes with SNARE complex formation, reduced the number of PRL-positive spots per cell (PRL antibodies placed extracellularly) significantly, from 58 ± 9 to 4 ± 2. In dominant-negative SNARE-treated cells, the PRL-positive area was reduced from 0.259 ± 0.013 to 0.123 ± 0.014 μm2, which is consistent with a hindered vesicle luminal access for extracellular PRL antibodies. These results indicate that vesicle discharge is regulated by SNARE-mediated fusion pore widening.


2000 ◽  
Vol 151 (2) ◽  
pp. 439-452 ◽  
Author(s):  
Eric Grote ◽  
Chavela M. Carr ◽  
Peter J. Novick

In yeast, assembly of exocytic soluble N-ethylmaleimide–sensitive fusion protein (NSF) attachment protein receptor (SNARE) complexes between the secretory vesicle SNARE Sncp and the plasma membrane SNAREs Ssop and Sec9p occurs at a late stage of the exocytic reaction. Mutations that block either secretory vesicle delivery or tethering prevent SNARE complex assembly and the localization of Sec1p, a SNARE complex binding protein, to sites of secretion. By contrast, wild-type levels of SNARE complexes persist in the sec1-1 mutant after a secretory block is imposed, suggesting a role for Sec1p after SNARE complex assembly. In the sec18-1 mutant, cis-SNARE complexes containing surface-accessible Sncp accumulate in the plasma membrane. Thus, one function of Sec18p is to disassemble SNARE complexes on the postfusion membrane.


2001 ◽  
Vol 29 (6) ◽  
pp. 742-745 ◽  
Author(s):  
B. López-Corcuera ◽  
C. Aragón ◽  
A. Geerlings

The regulation of neurotransmitter transporters is a central aspect of their physiology. Recent studies that focused on syntaxin-1 transporter interactions led to the postulation that syntaxin-1 is somehow implicated in protein trafficking. Because syntax – in-1 is involved in the exocytosis of neurotransmitters and it interacts with glycine transporter 2 (GLYT2), we stimulated exocytosis in synaptosomes and examined its effect on GLYT2 surface-expression and transport activity. We found that GLYT2 is rapidly trafficked first towards the plasma membrane and then internalized under conditions that stimulate vesicular glycine release. However, when syntaxin-1 was inactivated by pre-treatment of synaptosomes with the botulinum neurotoxin C, GLYT2 was unable to reach the plasma membrane but still was able to leave it. These results indicate the existence of a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated regulatory mechanism that controls the surface expression of GLYT2. Syntaxin-1 is involved in the transport of GLYT2 to, but not its retrieval from, the plasma membrane. Immunogold-labelling on purified vesicular preparations from synaptosomes showed that GLYT2 is present in small synaptic-like vesicles. This may represent neurotransmitter transporter that is being trafficked. The subcellular distribution of the glycine transporters was further examined in PC12 cells that were stably transfected with the fusions of GLYT1 and GLYT2 with green fluorescent protein. There was a clear difference in their intracellular distribution, GLYT1 being present mainly on the plasma membrane and GLYT2 being localized mainly on large, dense-core vesicles. We are trying to find signal sequences responsible for this differential localization.


2006 ◽  
Vol 34 (5) ◽  
pp. 687-690 ◽  
Author(s):  
S. Wang ◽  
S.C. Hsu

Exocytosis is a highly ordered vesicle trafficking pathway that targets proteins to the plasma membrane for membrane addition or secretion. Research over the years has discovered many proteins that participate at various stages in the mammalian exocytotic pathway. At the early stage of exocytosis, co-atomer proteins and their respective adaptors and GTPases have been shown to play a role in the sorting and incorporation of proteins into secretory vesicles. At the final stage of exocytosis, SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) and SNARE-associated proteins are believed to mediate the fusion of secretory vesicles at the plasma membrane. There are multiple events that may occur between the budding of secretory vesicles from the Golgi and the fusion of these vesicles at the plasma membrane. The most obvious and best-known event is the transport of secretory vesicles from Golgi to the vicinity of the plasma membrane via microtubules and their associated motors. At the vicinity of the plasma membrane, however, it is not clear how vesicles finally dock and fuse with the plasma membrane. Identification of proteins involved in these events should provide important insights into the mechanisms of this little known stage of the exocytotic pathway. Currently, a protein complex, known as the sec6/8 or the exocyst complex, has been implicated to play a role at this late stage of exocytosis.


2015 ◽  
Vol 26 (3) ◽  
pp. 530-536 ◽  
Author(s):  
Jessica B. A. Sadler ◽  
Nia J. Bryant ◽  
Gwyn W. Gould

The fusion of GLUT4-containing vesicles with the plasma membrane of adipocytes is a key facet of insulin action. This process is mediated by the formation of functional soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes between the plasma membrane t-SNARE complex and the vesicle v-SNARE or VAMP. The t-SNARE complex consists of Syntaxin4 and SNAP23, and whereas many studies identify VAMP2 as the v-SNARE, others suggest that either VAMP3 or VAMP8 may also fulfil this role. Here we characterized the levels of expression, distribution, and association of all the VAMPs expressed in 3T3-L1 adipocytes to provide the first systematic analysis of all members of this protein family for any cell type. Despite our finding that all VAMP isoforms form SDS-resistant SNARE complexes with Syntaxin4/SNAP23 in vitro, a combination of levels of expression (which vary by >30-fold), subcellular distribution, and coimmunoprecipitation analyses lead us to propose that VAMP2 is the major v-SNARE involved in GLUT4 trafficking to the surface of 3T3-L1 adipocytes.


2009 ◽  
Vol 418 (3) ◽  
pp. 529-540 ◽  
Author(s):  
Sarah E. Flowerdew ◽  
Robert D. Burgoyne

The KChIPs (K+ channel-interacting proteins) are EF hand-containing proteins required for the traffic of channel-forming Kv4 K+ subunits to the plasma membrane. KChIP1 is targeted, through N-terminal myristoylation, to intracellular vesicles that appear to be trafficking intermediates from the ER (endoplasmic reticulum) to the Golgi but differ from those underlying conventional ER–Golgi traffic. To define KChIP1 vesicles and the traffic pathway followed by Kv4/KChIP1 traffic, we examined their relationship to potential SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins mediating the trafficking step. To distinguish Kv4/KChIP1 from conventional constitutive traffic, we compared it to the traffic of the VSVG (vesicular-stomatitis virus G-protein). Expression of KChIP with single or triple EF hand mutations quantitatively inhibited Kv4/KChIP1 traffic to the cell surface but had no effect on VSVG traffic. KChIP1-expressing vesicles co-localized with the SNARE proteins Vti1a and VAMP7 (vesicle-associated membrane protein 7), but not with the components of two other ER–Golgi SNARE complexes. siRNA (small interfering RNA)-mediated knockdown of Vti1a or VAMP7 inhibited Kv4/KChIP1traffic to the plasma membrane in HeLa and Neuro2A cells. Vti1a and VAMP7 siRNA had no effect on VSVG traffic or that of Kv4.2 when stimulated by KChIP2, a KChIP with different intrinsic membrane targeting compared with KChIP1. The present results suggest that a SNARE complex containing VAMP7 and Vti1a defines a novel traffic pathway to the cell surface in both neuronal and non-neuronal cells.


2006 ◽  
Vol 17 (5) ◽  
pp. 2113-2124 ◽  
Author(s):  
Yoshikatsu Aikawa ◽  
Kara L. Lynch ◽  
Kristin L. Boswell ◽  
Thomas F.J. Martin

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play key roles in membrane fusion, but their sorting to specific membranes is poorly understood. Moreover, individual SNARE proteins can function in multiple membrane fusion events dependent upon their trafficking itinerary. Synaptosome-associated protein of 25 kDa (SNAP25) is a plasma membrane Q (containing glutamate)-SNARE essential for Ca2+-dependent secretory vesicle–plasma membrane fusion in neuroendocrine cells. However, a substantial intracellular pool of SNAP25 is maintained by endocytosis. To assess the role of endosomal SNAP25, we expressed botulinum neurotoxin E (BoNT E) light chain in PC12 cells, which specifically cleaves SNAP25. BoNT E expression altered the intracellular distribution of SNAP25, shifting it from a perinuclear recycling endosome to sorting endosomes, which indicates that SNAP25 is required for its own endocytic trafficking. The trafficking of syntaxin 13 and endocytosed cargo was similarly disrupted by BoNT E expression as was an endosomal SNARE complex comprised of SNAP25/syntaxin 13/vesicle-associated membrane protein 2. The small-interfering RNA-mediated down-regulation of SNAP25 exerted effects similar to those of BoNT E expression. Our results indicate that SNAP25 has a second function as an endosomal Q-SNARE in trafficking from the sorting endosome to the recycling endosome and that BoNT E has effects linked to disruption of the endosome recycling pathway.


Reproduction ◽  
2011 ◽  
Vol 141 (6) ◽  
pp. 737-747 ◽  
Author(s):  
Katie M Lowther ◽  
Viacheslav O Nikolaev ◽  
Lisa M Mehlmann

Mammalian oocytes are arrested at prophase I of meiosis until a preovulatory surge of LH stimulates them to resume meiosis. Prior to the LH surge, high levels of cAMP within the oocyte maintain meiotic arrest; this cAMP is generated in the oocyte through the activity of the constitutively active, Gs-coupled receptor, G-protein-coupled receptor 3 (GPR3) or GPR12. Activated GPRs are typically targeted for desensitization through receptor-mediated endocytosis, but a continuously high level of cAMP is needed for meiotic arrest. The aim of this study was to examine whether receptor-mediated endocytosis occurs in the mouse oocyte and whether this could affect the maintenance of meiotic arrest. We found that constitutive endocytosis occurs in the mouse oocyte. Inhibitors of receptor-mediated endocytosis, monodansylcadaverine and dynasore, inhibited the formation of early endosomes and completely inhibited spontaneous meiotic resumption. A red fluorescent protein-tagged GPR3 localized in the plasma membrane and within early endosomes in the oocyte, demonstrating that GPR3 is endocytosed. However, overexpression of G-protein receptor kinase 2 and β-arrestin-2 had only a modest effect on stimulating meiotic resumption, suggesting that these proteins do not play a major role in GPR3 endocytosis. Inhibition of endocytosis elevated cAMP levels within oocytes, suggesting that there is an accumulation of GPR3 at the plasma membrane. These results show that endocytosis occurs in the oocyte, leading to a decrease in cAMP production, and suggest that there is a balance between cAMP production and degradation in the arrested oocyte that maintains cAMP levels at an appropriate level during the maintenance of meiotic arrest.


2009 ◽  
Vol 37 (5) ◽  
pp. 1019-1021 ◽  
Author(s):  
J. Paul Luzio ◽  
Michael D.J. Parkinson ◽  
Sally R. Gray ◽  
Nicholas A. Bright

In mammalian cells, endocytosed cargo that is internalized through clathrin-coated pits/vesicles passes through early endosomes and then to late endosomes, before delivery to lysosomes for degradation by proteases. Late endosomes are MVBs (multivesicular bodies) with ubiquitinated membrane proteins destined for lysosomal degradation being sorted into their luminal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery. Cargo is delivered from late endosomes to lysosomes by kissing and direct fusion. These processes have been studied in live cell experiments and a cell-free system. Late endosome–lysosome fusion is preceded by tethering that probably requires mammalian orthologues of the yeast HOPS (homotypic fusion and vacuole protein sorting) complex. Heterotypic late endosome–lysosome membrane fusion is mediated by a trans-SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex comprising Syntaxin7, Vti1b, Syntaxin8 and VAMP7 (vesicle-associated membrane protein 7). This differs from the trans-SNARE complex required for homotypic late endosome fusion in which VAMP8 replaces VAMP7. VAMP7 is also required for lysosome fusion with the plasma membrane and its retrieval from the plasma membrane to lysosomes is mediated by its folded N-terminal longin domain. Co-ordinated interaction of the ESCRT, HOPS and SNARE complexes is required for cargo delivery to lysosomes.


2015 ◽  
Vol 465 (3) ◽  
pp. 359-370 ◽  
Author(s):  
Claudia Nora Tomes

Exocytosis is a highly regulated process that consists of multiple functionally, kinetically and/or morphologically definable stages such as recruitment, targeting, tethering and docking of secretory vesicles with the plasma membrane, priming of the fusion machinery and calcium-triggered membrane fusion. After fusion, the membrane around the secretory vesicle is incorporated into the plasma membrane and the granule releases its contents. The proteins involved in these processes belong to several highly conserved families: Rab GTPases, SNAREs (soluble NSF-attachment protein receptors), α-SNAP (α-NSF attachment protein), NSF (N-ethylmaleimide-sensitive factor), Munc13 and -18, complexins and synaptotagmins. In the present article, the molecules of exocytosis are reviewed, using human sperm as a model system. Sperm exocytosis is driven by isoforms of the same proteinaceous fusion machinery mentioned above, with their functions orchestrated in a hierarchically organized and unidirectional signalling cascade. In addition to the universal exocytosis regulator calcium, this cascade includes other second messengers such as diacylglycerol, inositol 1,4,5-trisphosphate and cAMP, as well as the enzymes that synthesize them and their target proteins. Of special interest is the cAMP-binding protein Epac (exchange protein directly activated by cAMP) due in part to its enzymatic activity towards Rap. The activation of Epac and Rap leads to a highly localized calcium signal which, together with assembly of the SNARE complex, governs the final stages of exocytosis. The source of this releasable calcium is the secretory granule itself.


Sign in / Sign up

Export Citation Format

Share Document