scholarly journals The Yeast Formin Bnr1p Has Two Localization Regions That Show Spatially and Temporally Distinct Association with Septin Structures

2010 ◽  
Vol 21 (7) ◽  
pp. 1253-1262 ◽  
Author(s):  
Lina Gao ◽  
Wenyu Liu ◽  
Anthony Bretscher

Formins are conserved eukaryotic proteins that direct the nucleation and elongation of unbranched actin filaments. The yeast formins, Bni1p and Bnr1p, assemble actin cables from the bud cortex and bud neck, respectively, to guide overall cell polarity. Here we examine the regions of Bnr1p responsible for bud neck localization. We define two non-overlapping regions, Bnr1p-L1 (1-466) and Bnr1p-L2 (466-733), that can each localize to the bud neck independently of endogenous Bnr1p. Bnr1p-L1 and Bnr1p-L2 localize with septins at the bud neck, but show slightly differently spatial and temporal localization, reflecting the localization (Bnr1p-L1) or cell cycle timing (Bnr1p-L2) of full-length Bnr1p. Bnr1p is known to be very stably localized at the bud neck, and both Bnr1p-L1 and Bnr1p-L2 also show relatively stable localization there. Overexpression of Bnr1p-L1, but not Bnr1p-L2, disrupts septin organization at the bud neck. Thus Bnr1p has two separable regions that each contribute to its bud neck localization.

2017 ◽  
Vol 28 (7) ◽  
pp. 883-889 ◽  
Author(s):  
Franz Meitinger ◽  
Gislene Pereira

Cell cycle–dependent morphogenesis of unicellular organisms depends on the spatiotemporal control of cell polarity. Rho GTPases are the major players that guide cells through structural reorganizations such as cytokinesis (Rho1 dependent) and polarity establishment (Cdc42 dependent). In budding yeast, the protein Gps1 plays a pivotal role in both processes. Gps1 resides at the bud neck to maintain Rho1 localization and restrict Cdc42 activity during cytokinesis. Here we analyze how Gps1 is recruited to the bud neck during the cell cycle. We show that different regions of Gps1 and the septin-associated kinase Gin4 are involved in maintaining Gps1 at the bud neck from late G1 phase until midanaphase. From midanaphase, the targeting function of Gin4 is taken over by the bud neck–associated protein Nba1. Our data show that Gps1 is targeted to the cell division site in a biphasic manner, via Gin4 and Nba1, to control the spatiotemporal activation of Rho1 and inhibition of Cdc42.


2016 ◽  
Vol 215 (4) ◽  
pp. 559-573 ◽  
Author(s):  
Tamako Nishimura ◽  
Shoko Ito ◽  
Hiroko Saito ◽  
Sylvain Hiver ◽  
Kenta Shigetomi ◽  
...  

Epithelial junctions comprise two subdomains, the apical junctional complex (AJC) and the adjacent lateral membrane contacts (LCs), that span the majority of the junction. The AJC is lined with circumferential actin cables, whereas the LCs are associated with less-organized actin filaments whose roles are elusive. We found that DAAM1, a formin family actin regulator, accumulated at the LCs, and its depletion caused dispersion of actin filaments at these sites while hardly affecting circumferential actin cables. DAAM1 loss enhanced the motility of LC-forming membranes, leading to their invasion of neighboring cell layers, as well as disruption of polarized epithelial layers. We found that components of the WAVE complex and its downstream targets were required for the elevation of LC motility caused by DAAM1 loss. These findings suggest that the LC membranes are motile by nature because of the WAVE complex, but DAAM1-mediated actin regulation normally restrains this motility, thereby stabilizing epithelial architecture, and that DAAM1 loss evokes invasive abilities of epithelial cells.


1991 ◽  
Vol 114 (3) ◽  
pp. 515-532 ◽  
Author(s):  
M Snyder ◽  
S Gehrung ◽  
B D Page

The establishment of cell polarity was examined in the budding yeast, S. cerevisiae. The distribution of a polarized protein, the SPA2 protein, was followed throughout the yeast cell cycle using synchronized cells and cdc mutants. The SPA2 protein localizes to a patch at the presumptive bud site of G1 cells. Later it concentrates at the bud tip in budded cells. At cytokinesis, the SPA2 protein is at the neck between the mother and daughter cells. Analysis of unbudded haploid cells has suggested a series of events that occurs during G1. The SPA2 patch is established very early in G1, while the spindle pole body residues on the distal side of the nucleus. Later, microtubules emanating from the spindle pole body intersect the SPA2 crescent, and the nucleus probably rotates towards the SPA2 patch. By middle G1, most cells contain the SPB on the side of the nucleus proximal to the SPA2 patch, and a long extranuclear microtubule bundle intersects this patch. We suggest that a microtubule capture site exists in the SPA2 staining region that stabilizes the long microtubule bundle; this capture site may be responsible for rotation of the nucleus. Cells containing a polarized distribution of the SPA2 protein also possess a polarized distribution of actin spots in the same region, although the actin staining is much more diffuse. Moreover, cdc4 mutants, which form multiple buds at the restrictive temperature, exhibit simultaneous staining of the SPA2 protein and actin spots in a subset of the bud tips. spa2 mutants contain a polarized distribution of actin spots, and act1-1 and act1-2 mutants often contain a polarized distribution of the SPA2 protein suggesting that the SPA2 protein is not required for localization of the actin spots and the actin spots are not required for localization of the SPA2 protein. cdc24 mutants, which fail to form buds at the restrictive temperature, fail to exhibit polarized localization of the SPA2 protein and actin spots, indicating that the CDC24 protein is directly or indirectly responsible for controlling the polarity of these proteins. Based on the cell cycle distribution of the SPA2 protein, a "cytokinesis tag" model is proposed to explain the mechanism of the non-random positioning of bud sites in haploid yeast cells.


2000 ◽  
Vol 149 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Andrew Bloecher ◽  
Kelly Tatchell

Protein phosphatase type I (PP1), encoded by the single essential gene GLC7 in Saccharomyces cerevisiae, functions in diverse cellular processes. To identify in vivo subcellular location(s) where these processes take place, we used a functional green fluorescent protein (GFP)–Glc7p fusion protein. Time-lapse fluorescence microscopy revealed GFP–Glc7p localizes predominantly in the nucleus throughout the mitotic cell cycle, with the highest concentrations in the nucleolus. GFP–Glc7p was also observed in a ring at the bud neck, which was dependent upon functional septins. Supporting a role for Glc7p in bud site selection, a glc7-129 mutant displayed a random budding pattern. In α-factor treated cells, GFP–Glc7p was located at the base of mating projections, again in a septin-dependent manner. At the start of anaphase, GFP–Glc7p accumulated at the spindle pole bodies and remained there until cytokinesis. After anaphase, GFP–Glc7p became concentrated in a ring that colocalized with the actomyosin ring. A GFP–Glc7-129 fusion was defective in localizing to the bud neck and SPBs. Together, these results identify sites of Glc7p function and suggest Glc7p activity is regulated through dynamic changes in its location.


2018 ◽  
Vol 49 (5) ◽  
pp. 1987-1998 ◽  
Author(s):  
Mashael R. Al-Anazi ◽  
Nyla Nazir ◽  
Dilek Colak ◽  
Mohammed N. Al-Ahdal ◽  
Ahmed A. Al-Qahtani

Background/Aims: The hepatitis B virus X protein (HBx) is a viral trans-activator that plays a crucial role in pathogenesis of hepatocellular carcinoma (HCC) via an unknown mechanism. The role of HBx in modulating cell proliferation and programmed cell death is replete with controversies. Thus, the goal of this study was to elucidate the effect of HBx and its deletion mutants on cell cycle progression in human hepatoma cells. Methods: Huh7 cells transfected with either full-length or truncated HBx were tested for their mitogenic potential based on their effect on the expression of key cell cycle-related proteins (p27, cyclin D1, p21, and p53) and pro-apoptotic proteins such as cleaved poly (ADP-ribose) polymerase (PARP) and Bax. Western blotting and immunofluorescence techniques were applied to detect changes in the expression levels and intracellular localization, respectively, of the investigated proteins. Also, Quantitative real-time PCR (qRT-PCR) was used to detect changes in RNA levels. Results: An increased anchorage-independent growth of cells transfected with HBx-WT and its deletion mutants was observed. The cell cycle regulatory molecules were differentially modulated by full-length HBx (1-154) and its different N- and C-terminal truncated forms (HBx (31-154), HBx (61-154), HBx (1-94), and HBx (61-124)). An enhanced modulation of p27, p21, and cyclin D1 was associated with HBx (1-154), whereas p53 expression was significantly inhibited by HBx (61-124). Similarly, the expression of cleaved PARP and Bax was efficiently suppressed by HBx (1-94) and HBx (61-154). Conclusion: The HBx-WT and its mutants play a critical role in the pathogenesis and progression of HCC by modulating cell cycle regulatory proteins.


2018 ◽  
Vol 38 (17) ◽  
Author(s):  
Sang Bum Kim ◽  
Lu Zhang ◽  
Jimok Yoon ◽  
Jeon Lee ◽  
Jaewon Min ◽  
...  

ABSTRACT Adenomatous polyposis coli (APC) is a key molecule to maintain cellular homeostasis in colonic epithelium by regulating cell-cell adhesion, cell polarity, and cell migration through activating the APC-stimulated guanine nucleotide-exchange factor (Asef). The APC-activated Asef stimulates the small GTPase, which leads to decreased cell-cell adherence and cell polarity, and enhanced cell migration. In colorectal cancers, while truncated APC constitutively activates Asef and promotes cancer initiation and progression, regulation of Asef by full-length APC is still unclear. Here, we report the autoinhibition mechanism of full-length APC. We found that the armadillo repeats in full-length APC interact with the APC residues 1362 to 1540 (APC-2,3 repeats), and this interaction competes off and inhibits Asef. Deletion of APC-2,3 repeats permits Asef interactions leading to downstream signaling events, including the induction of Golgi fragmentation through the activation of the Asef-ROCK-MLC2. Truncated APC also disrupts protein trafficking and cholesterol homeostasis by inhibition of SREBP2 activity in a Golgi fragmentation-dependent manner. Our study thus uncovers the autoinhibition mechanism of full-length APC and a novel gain of function of truncated APC in regulating Golgi structure, as well as cholesterol homeostasis, which provides a potential target for pharmaceutical intervention against colon cancers.


2000 ◽  
Vol 113 (24) ◽  
pp. 4533-4543 ◽  
Author(s):  
J.R. Boyne ◽  
H.M. Yosuf ◽  
P. Bieganowski ◽  
C. Brenner ◽  
C. Price

MLC1 (myosin light chain) acts as a dosage suppressor of a temperature sensitive mutation in the gene encoding the S. cerevisiae IQGAP protein. Both proteins localize to the bud neck in mitosis although Mlc1p localisation precedes Iqg1p. Mlc1p is also found at the incipient bud site in G(1) and the growing bud tip during S and G(2) phases of the cell cycle. A dominant negative GST-Mlc1p fusion protein specifically blocks cytokinesis and prevents Iqg1p localisation to the bud neck, as does depletion of Mlc1p. These data support a direct interaction between the two proteins and immunoprecipitation experiments confirm this prediction. Mlc1p is also shown to interact with the class II conventional myosin (Myo1p). All three proteins form a complex, however, the interaction between Mlc1p and Iqg1p can be separated from the Mlc1p/Myo1p interaction. Mlc1p localisation and maintenance at the bud neck is independent of actin, Myo1p and Iqg1p. It is proposed that Mlc1p therefore functions to recruit Iqg1p and in turn actin to the actomyosin ring and that it is also required for Myo1p function during ring contraction.


2021 ◽  
Author(s):  
Pénélope Darnat ◽  
Angelique Burg ◽  
Jérémy Sallé ◽  
Jérôme Lacoste ◽  
Sophie Louvet-Vallée ◽  
...  

Abstract Cell proliferation and cell polarity need to be precisely coordinated to orient the asymmetric cell divisions crucial for generating cell diversity in epithelia. In many instances, the Frizzled/Dishevelled planar cell polarity pathway is involved in mitotic spindle orientation, but how this is spatially and temporally coordinated with cell cycle progression has remained elusive. Using Drosophila sensory organ precursor cells as a model system, we show that Cyclin A, the main Cyclin driving the transition to M-phase of the cell cycle, is recruited to the apical-posterior cortex in prophase by the Frizzled/Dishevelled complex. This cortically localized Cyclin A then regulates the orientation of the division by recruiting Mud, a homologue of NuMA, the well-known spindle-associated protein. The observed non-canonical subcellular localization of Cyclin A reveals this mitotic factor as a direct link between cell proliferation, cell polarity and spindle orientation.


2001 ◽  
Vol 114 (2) ◽  
pp. 247-255 ◽  
Author(s):  
S.C. Schuyler ◽  
D. Pellman

Accurate distribution of the chromosomes in dividing cells requires coupling of cellular polarity cues with both the orientation of the mitotic spindle and cell cycle progression. Work in budding yeast has demonstrated that cytoplasmic dynein and the kinesin Kip3p define redundant pathways that ensure proper spindle orientation. Furthermore, it has been shown that the Kip3p pathway components Kar9p and Bim1p (Yeb1p) form a complex that provides a molecular link between cortical polarity cues and spindle microtubules. Recently, other studies indicated that the cortical localization of Kar9p depends upon actin cables and Myo2p, a type V myosin. In addition, a BUB2-dependent cell cycle checkpoint has been described that inhibits the mitotic exit network and cytokinesis until proper centrosome position is achieved. Combined, these studies provide molecular insight into how cells link cellular polarity, spindle position and cell cycle progression.


Sign in / Sign up

Export Citation Format

Share Document