scholarly journals The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase

2011 ◽  
Vol 22 (9) ◽  
pp. 1599-1607 ◽  
Author(s):  
Kara A. Bernstein ◽  
Robert J.D. Reid ◽  
Ivana Sunjevaric ◽  
Kimberly Demuth ◽  
Rebecca C. Burgess ◽  
...  

The Shu complex, which contains RAD51 paralogues, is involved in the decision between homologous recombination and error-prone repair. We discovered a link to ribosomal DNA (rDNA) recombination when we found an interaction between one member of the Shu complex, SHU1, and UAF30, a component of the upstream activating factor complex (UAF), which regulates rDNA transcription. In the absence of Uaf30, rDNA copy number increases, and this increase depends on several functional subunits of the Shu complex. Furthermore, in the absence of Uaf30, we find that Shu1 and Srs2, an anti-recombinase DNA helicase with which the Shu complex physically interacts, act in the same pathway regulating rDNA recombination. In addition, Shu1 modulates Srs2 recruitment to both induced and spontaneous foci correlating with a decrease in Rad51 foci, demonstrating that the Shu complex is an important regulator of Srs2 activity. Last, we show that Shu1 regulation of Srs2 to double-strand breaks is not restricted to the rDNA, indicating a more general function for the Shu complex in the regulation of Srs2. We propose that the Shu complex shifts the balance of repair toward Rad51 filament stabilization by inhibiting the disassembly reaction of Srs2.

2021 ◽  
Author(s):  
Jonathan O Nelson ◽  
Alyssa Slicko ◽  
Yukiko M Yamashita

Ribosomal RNAs (rRNAs) account for 80-90% of all transcripts in eukaryotic cells. To meet this demand, the ribosomal DNA (rDNA) gene that codes for rRNA is tandemly repeated hundreds of times, comprising rDNA loci on eukaryotic chromosomes. This repetitiveness imposes a challenge to maintaining sufficient copy number due to spontaneous intra-chromatid recombination between repetitive units causing copy number loss. The progressive shrinking of rDNA loci from generation to generation could lead to extinction of the lineage, yet the mechanism(s) to counteract spontaneous copy number loss remained unclear. Here, we show that the rDNA-specific retrotransposon R2 is essential for rDNA copy number (CN) maintenance in the Drosophila male germline, despite the perceived disruptive nature of transposable elements. Depletion of R2 led to defective rDNA CN maintenance in multiple contexts, causing a decline in fecundity over generations and eventual extinction of the lineage. Our data suggests that DNA double strand breaks generated by R2 is the initiating event of rDNA CN expansion, stimulating the repair processes proposed to underlie rDNA CN expansion. This study reveals that retrotransposons can provide a benefit to their hosts, contrary to their reputation as genomic parasitic, which may contribute to their widespread success throughout taxa.


2004 ◽  
Vol 15 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Stéphane Coulon ◽  
Pierre-Henri L. Gaillard ◽  
Charly Chahwan ◽  
William Hayes McDonald ◽  
John R. Yates ◽  
...  

In most eukaryotes, genes encoding ribosomal RNAs (rDNA) are clustered in long tandem head-to-tail repeats. Studies of Saccharomyces cerevisiae have indicated that rDNA copy number is maintained through recombination events associated with site-specific blockage of replication forks (RFs). Here, we describe two Schizosaccharomyces pombe proteins, homologs of S. cerevisiae Slx1 and Slx4, as subunits of a novel type of endonuclease that maintains rDNA copy number. The Slx1-Slx4–dependent endonuclease introduces single-strand cuts in duplex DNA on the 3′ side of junctions with single-strand DNA. Deletion of Slx1 or Rqh1 RecQ-like DNA helicase provokes rDNA contraction, whereas simultaneous elimination of Slx1-Slx4 endonuclease and Rqh1 is lethal. Slx1 associates with chromatin at two foci characteristic of the two rDNA repeat loci in S. pombe. We propose a model in which the Slx1–Slx4 complex is involved in the control of the expansion and contraction of the rDNA loci by initiating recombination events at stalled RFs.


2020 ◽  
Author(s):  
Eriko Watada ◽  
Sihan Li ◽  
Yutaro Hori ◽  
Katsunori Fujiki ◽  
Katsuhiko Shirahige ◽  
...  

AbstractThe ribosomal RNA gene, which consists of tandem repetitive arrays (rDNA repeat), is one of the most unstable regions in the genome. The rDNA repeat in the budding yeast is known to become unstable as the cell ages. However, it is unclear how the rDNA repeat changes in ageing mammalian cells. Using quantitative analyses, we identified age-dependent alterations in rDNA copy number and levels of methylation in mice. The degree of methylation and copy number of rDNA from bone marrow cells of 2-year-old mice were increased by comparison to 4-week-old mice in two mouse strains, BALB/cA and C57BL/6. Moreover, the level of pre-rRNA transcripts was reduced in older BALB/cA mice. We also identified many sequence variations among the repeats with two mutations being unique to old mice. These sequences were conserved in budding yeast and equivalent mutations shortened the yeast chronological lifespan. Our findings suggest that rDNA is also fragile in mammalian cells and alterations within this region have a profound effect on cellular function.Author SummaryThe ribosomal RNA gene (rDNA) is one of the most unstable regions in the genome due to its tandem repetitive structure. rDNA copy number in the budding yeast increases and becomes unstable as the cell ages. It is speculated that the rDNA produces an “aging signal” inducing senescence and death. However, it is unclear how the rDNA repeat changes during the aging process in mammalian cells. In this study, we attempted to identify the age-dependent alteration of rDNA in mice. Using quantitative single cell analysis, we show that rDNA copy number increases in old mice bone marrow cells. By contrast, the level of ribosomal RNA production was reduced because of increased levels of DNA methylation that represses transcription. We also identified many sequence variations in the rDNA. Among them, three mutations were unique to old mice and two of them were found in the conserved region in budding yeast. We then established a yeast strain with the old mouse-specific mutations and found this shortened the lifespan of the cells. These findings suggest that rDNA is also fragile in mammalian cells and alteration to this region of the genome affects cellular senescence.


2020 ◽  
Vol 8 (3) ◽  
pp. 316 ◽  
Author(s):  
Yurui Wang ◽  
Yaohan Jiang ◽  
Yongqiang Liu ◽  
Yuan Li ◽  
Laura A. Katz ◽  
...  

While nuclear small subunit ribosomal DNA (nSSU rDNA) is the most commonly-used gene marker in studying phylogeny, ecology, abundance, and biodiversity of microbial eukaryotes, mitochondrial small subunit ribosomal DNA (mtSSU rDNA) provides an alternative. Recently, both copy number variation and sequence variation of nSSU rDNA have been demonstrated for diverse organisms, which can contribute to misinterpretation of microbiome data. Given this, we explore patterns for mtSSU rDNA among 13 selected ciliates (representing five classes), a major component of microbial eukaryotes, estimating copy number and sequence variation and comparing to that of nSSU rDNA. Our study reveals: (1) mtSSU rDNA copy number variation is substantially lower than that for nSSU rDNA; (2) mtSSU rDNA copy number ranges from 1.0 × 104 to 8.1 × 105; (3) a most common sequence of mtSSU rDNA is also found in each cell; (4) the sequence variation of mtSSU rDNA are mainly indels in poly A/T regions, and only half of species have sequence variation, which is fewer than that for nSSU rDNA; and (5) the polymorphisms between haplotypes of mtSSU rDNA would not influence the phylogenetic topology. Together, these data provide more insights into mtSSU rDNA as a powerful marker especially for microbial ecology studies.


2008 ◽  
Vol 181 (7) ◽  
pp. 1083-1093 ◽  
Author(s):  
Soma Banerjee ◽  
Stephanie Smith ◽  
Ji-Hyun Oum ◽  
Hung-Jiun Liaw ◽  
Ji-Young Hwang ◽  
...  

Gross chromosomal rearrangement (GCR) is a type of genomic instability associated with many cancers. In yeast, multiple pathways cooperate to suppress GCR. In a screen for genes that promote GCR, we identified MPH1, which encodes a 3′–5′ DNA helicase. Overexpression of Mph1p in yeast results in decreased efficiency of homologous recombination (HR) as well as delayed Rad51p recruitment to double-strand breaks (DSBs), which suggests that Mph1p promotes GCR by partially suppressing HR. A function for Mph1p in suppression of HR is further supported by the observation that deletion of both mph1 and srs2 synergistically sensitize cells to methyl methanesulfonate-induced DNA damage. The GCR-promoting activity of Mph1p appears to depend on its interaction with replication protein A (RPA). Consistent with this observation, excess Mph1p stabilizes RPA at DSBs. Furthermore, spontaneous RPA foci at DSBs are destabilized by the mph1Δ mutation. Therefore, Mph1p promotes GCR formation by partially suppressing HR, likely through its interaction with RPA.


2017 ◽  
Vol 284 (1859) ◽  
pp. 20170425 ◽  
Author(s):  
Chundi Wang ◽  
Tengteng Zhang ◽  
Yurui Wang ◽  
Laura A. Katz ◽  
Feng Gao ◽  
...  

Small subunit ribosomal DNA (SSU rDNA) is widely used for phylogenetic inference, barcoding and other taxonomy-based analyses. Recent studies indicate that SSU rDNA of ciliates may have a high level of sequence variation within a single cell, which impacts the interpretation of rDNA-based surveys. However, sequence variation can come from a variety of sources including experimental errors, especially the mutations generated by DNA polymerase in PCR. In the present study, we explore the impact of four DNA polymerases on sequence variation and find that low-fidelity polymerases exaggerate the estimates of single-cell sequence variation. Therefore, using a polymerase with high fidelity is essential for surveys of sequence variation. Another source of variation results from errors during amplification of SSU rDNA within the polyploidy somatic macronuclei of ciliates. To investigate further the impact of SSU rDNA copy number variation, we use a high-fidelity polymerase to examine the intra-individual SSU rDNA polymorphism in ciliates with varying levels of macronuclear amplification: Halteria grandinella , Blepharisma americanum and Strombidium stylifer . We estimate the rDNA copy numbers of these three species by single-cell quantitative PCR. The results indicate that: (i) sequence variation of SSU rDNA within a single cell is authentic in ciliates, but the level of intra-individual SSU rDNA polymorphism varies greatly among species; (ii) rDNA copy numbers vary greatly among species, even those within the same class; (iii) the average rDNA copy number of Halteria grandinella is about 567 893 (s.d. = 165 481), which is the highest record of rDNA copy number in ciliates to date; and (iv) based on our data and the records from previous studies, it is not always true in ciliates that rDNA copy numbers are positively correlated with cell or genome size.


2005 ◽  
Vol 25 (20) ◽  
pp. 8925-8937 ◽  
Author(s):  
V. Ashutosh Rao ◽  
Angela M. Fan ◽  
LingHua Meng ◽  
Christopher F. Doe ◽  
Phillip S. North ◽  
...  

ABSTRACT Topoisomerase I-associated DNA single-strand breaks selectively trapped by camptothecins are lethal after being converted to double-strand breaks by replication fork collisions. BLM (Bloom's syndrome protein), a RecQ DNA helicase, and topoisomerase IIIα (Top3α) appear essential for the resolution of stalled replication forks (Holliday junctions). We investigated the involvement of BLM in the signaling response to Top1-mediated replication DNA damage. In BLM-complemented cells, BLM colocalized with promyelocytic leukemia protein (PML) nuclear bodies and Top3α. Fibroblasts without BLM showed an increased sensitivity to camptothecin, enhanced formation of Top1-DNA complexes, and delayed histone H2AX phosphorylation (γ-H2AX). Camptothecin also induced nuclear relocalization of BLM, Top3α, and PML protein and replication-dependent phosphorylation of BLM on threonine 99 (T99p-BLM). T99p-BLM was also observed following replication stress induced by hydroxyurea. Ataxia telangiectasia mutated (ATM) protein and AT- and Rad9-related protein kinases, but not DNA-dependent protein kinase, appeared to play a redundant role in phosphorylating BLM. Following camptothecin treatment, T99p-BLM colocalized with γ-H2AX but not with Top3α or PML. Thus, BLM appears to dissociate from Top3α and PML following its phosphorylation and facilitates H2AX phosphorylation in response to replication double-strand breaks induced by Top1. A defect in γ-H2AX signaling in response to unrepaired replication-mediated double-strand breaks might, at least in part, explain the camptothecin-sensitivity of BLM-deficient cells.


2021 ◽  
Author(s):  
Francesca B Lopez ◽  
Antoine Fort ◽  
Luca Tadini ◽  
Aline V Probst ◽  
Marcus McHale ◽  
...  

Abstract The 45S rRNA genes (rDNA) are amongst the largest repetitive elements in eukaryotic genomes. rDNA consists of tandem arrays of rRNA genes, many of which are transcriptionally silenced. Silent rDNA repeats may act as ‘back-up’ copies for ribosome biogenesis and have nuclear organization roles. Through Cas9-mediated genome editing in the Arabidopsis thaliana female gametophyte we reduced 45S rDNA copy number to a plateau of ∼10%. Two independent lines had rDNA copy numbers reduced by up to 90% at the T7 generation, named Low Copy Number (LCN) lines. Despite drastic reduction of rDNA copies, rRNA transcriptional rates and steady-state levels remained the same as wild type plants. Gene dosage compensation of rRNA transcript levels was associated with reduction of silencing histone marks at rDNA loci and altered Nucleolar Organiser Region 2 organization. While overall genome integrity of LCN lines appears unaffected, a chromosome segmental duplication occurred in one of the lines. Transcriptome analysis of LCN seedlings identified several shared dysregulated genes and pathways in both independent lines. Cas9 genome editing of rRNA repeats to generate LCN lines provides a powerful technique to elucidate rDNA dosage compensation mechanisms and impacts of low rDNA copy number on genome stability, development, and cellular processes.


2021 ◽  
Author(s):  
Stavroula Tsaridou ◽  
Georgia Velimezi ◽  
Frances Willenbrock ◽  
Maria Chatzifrangkeskou ◽  
Andreas Panagopoulos ◽  
...  

DNA lesions occur across the genome and constitute a threat to cell viability; however, damage at specific genomic loci has a disproportionally greater impact on the overall genome stability. The ribosomal RNA gene repeats (rDNA) are emerging fragile sites due to repetitive nature, clustering and high transcriptional activity. Recent progress in understanding how the rDNA damage response is organized has highlighted the key role of adaptor proteins in the response. Here we identify that the scaffold and tumor suppressor, RASSF1A is recruited at sites of damage and enriched at rDNA breaks. Employing targeted nucleolar DNA damage, we find that RASSF1A recruitment requires ATM activity and depends on 53BP1. At sites of damage RASSF1A facilitates local ATM signal establishment and rDNA break repair. RASSF1A silencing, a common epigenetic event during malignant transformation, results in persistent breaks, rDNA copy number alterations and decreased cell viability. Meta-analysis of a lung adenocarcinoma cohort showed that RASSF1A epigenetic silencing leads in rDNA copy number discrepancies. Overall, we present evidence that RASSF1A acts as a DNA repair factor and offer mechanistic insight in how the nucleolar DNA damage response is organized.


Sign in / Sign up

Export Citation Format

Share Document