scholarly journals An evolving paradigm for the secretory pathway?

2011 ◽  
Vol 22 (21) ◽  
pp. 3929-3932 ◽  
Author(s):  
Jennifer Lippincott-Schwartz

The paradigm that the secretory pathway consists of a stable endoplasmic reticulum and Golgi apparatus, using discrete transport vesicles to exchange their contents, gained important support from groundbreaking biochemical and genetic studies during the 1980s. However, the subsequent development of new imaging technologies with green fluorescent protein introduced data on dynamic processes not fully accounted for by the paradigm. As a result, we may be seeing an example of how a paradigm is evolving to account for the results of new technologies and their new ways of describing cellular processes.

2019 ◽  
Vol 116 (23) ◽  
pp. 11291-11298 ◽  
Author(s):  
Aeid Igbaria ◽  
Philip I. Merksamer ◽  
Ala Trusina ◽  
Firehiwot Tilahun ◽  
Jeffrey R. Johnson ◽  
...  

Diverse perturbations to endoplasmic reticulum (ER) functions compromise the proper folding and structural maturation of secretory proteins. To study secretory pathway physiology during such “ER stress,” we employed an ER-targeted, redox-responsive, green fluorescent protein—eroGFP—that reports on ambient changes in oxidizing potential. Here we find that diverse ER stress regimes cause properly folded, ER-resident eroGFP (and other ER luminal proteins) to “reflux” back to the reducing environment of the cytosol as intact, folded proteins. By utilizing eroGFP in a comprehensive genetic screen in Saccharomyces cerevisiae, we show that ER protein reflux during ER stress requires specific chaperones and cochaperones residing in both the ER and the cytosol. Chaperone-mediated ER protein reflux does not require E3 ligase activity, and proceeds even more vigorously when these ER-associated degradation (ERAD) factors are crippled, suggesting that reflux may work in parallel with ERAD. In summary, chaperone-mediated ER protein reflux may be a conserved protein quality control process that evolved to maintain secretory pathway homeostasis during ER protein-folding stress.


2006 ◽  
Vol 174 (2) ◽  
pp. 207-220 ◽  
Author(s):  
Gang Zhang ◽  
Rohini Kashimshetty ◽  
Kwee Eng Ng ◽  
Heng Buck Tan ◽  
Foong May Yeong

Budding yeast chitin synthase 2 (Chs2p), which lays down the primary septum, localizes to the mother–daughter neck in telophase. However, the mechanism underlying the timely neck localization of Chs2p is not known. Recently, it was found that a component of the exocyst complex, Sec3p–green fluorescent protein, arrives at the neck upon mitotic exit. It is not clear whether the neck localization of Chs2p, which is a cargo of the exocyst complex, was similarly regulated by mitotic exit. We report that Chs2p was restrained in the endoplasmic reticulum (ER) during metaphase. Furthermore, mitotic exit was sufficient to cause Chs2p neck localization specifically by triggering the Sec12p-dependent transport of Chs2p out of the ER. Chs2p was “forced” prematurely to the neck by mitotic kinase inactivation at metaphase, with chitin deposition occurring between mother and daughter cells. The dependence of Chs2p exit from the ER followed by its transport to the neck upon mitotic exit ensures that septum formation occurs only after the completion of mitotic events.


2009 ◽  
Vol 8 (6) ◽  
pp. 830-843 ◽  
Author(s):  
Ryan J. Perry ◽  
Fred D. Mast ◽  
Richard A. Rachubinski

ABSTRACT Two pathways have been identified for peroxisome formation: (i) growth and division and (ii) de novo synthesis. Recent experiments determined that peroxisomes originate at the endoplasmic reticulum (ER). Although many proteins have been implicated in the peroxisome biogenic program, no proteins in the eukaryotic secretory pathway have been identified as having roles in peroxisome formation. Using the yeast Saccharomyces cerevisiae regulatable Tet promoter Hughes clone collection, we found that repression of the ER-associated secretory proteins Sec20p and Sec39p resulted in mislocalization of the peroxisomal matrix protein chimera Pot1p-green fluorescent protein (GFP) to the cytosol. Likewise, the peroxisomal membrane protein chimera Pex3p-GFP localized to tubular-vesicular structures in cells suppressed for Sec20p, Sec39p, and Dsl1p, which form a complex at the ER. Loss of Sec39p attenuated formation of Pex3p-derived peroxisomal structures following galactose induction of Pex3p-GFP expression from the GAL1 promoter. Expression of Sec20p, Sec39p, and Dsl1p was moderately increased in yeast grown under conditions that proliferate peroxisomes, and Sec20p, Sec39p, and Dsl1p were found to cofractionate with peroxisomes and colocalize with Pex3p-monomeric red fluorescent protein under these conditions. Our results show that SEC20, SEC39, and DSL1 are essential secretory genes involved in the early stages of peroxisome assembly, and this work is the first to identify and characterize an ER-associated secretory machinery involved in peroxisome biogenesis.


1998 ◽  
Vol 331 (2) ◽  
pp. 669-675 ◽  
Author(s):  
Aristea E. POULI ◽  
Helen J. KENNEDY ◽  
J. George SCHOFIELD ◽  
Guy A. RUTTER

We have prepared recombinant cDNAs encoding chimaeras between human preproinsulin (sp.B.C.A., for B-, Connecting- and A-peptides) and a thermostable mutant of green fluorescent protein (GFPS65T, V163A, GFP*). The subcellular localization of the expressed chimaeras was monitored in living insulin-secreting INS-1 β-cells by laser scanning confocal microscopy. When GFP* was fused at the immediate N-terminus of the B-chain (sp.[GFP*].B.C.A.myc) two distinct patterns of fluorescence were apparent. In 1530/1740 cells examined, fluorescence was confined to a reticular, exclusively extranuclear structure, and closely co-localized with the endoplasmic reticulum marker, calreticulin. However, 210/1740 (12.1%) of cells displayed punctate fluorescence, which partially co-localized with the trans-Golgi network marker, TGN 38, and with the dense core secretory granule marker, phogrin. Since secretion of GFP* fluorescence into the medium could not readily be measured, we prepared a chimaera in which firefly luciferase was fused at the C-terminus of proinsulin (sp.B.C.A.myc.[Luc]). This chimaera displayed a distribution closely similar to that of sp.[GFP*].B.C.A.myc, but with a lower proportion (15/310, 4.8%) of the cells showing clear punctate distribution. At substimulatory glucose concentrations (3 mM) secretion of sp.B.C.A.myc.[Luc] could not be detected (rate of release into the medium identical with that of the cytosolic Renilla reniformis luciferase), indicating that the chimaera did not enter the constitutive secretory pathway. However, elevated (30 mM) glucose stimulated the release of the sp.B.C.A.myc.[Luc] luciferase chimaera, without a detectable effect on R. reniformis luciferase release. These data suggest that fusion of insulin, and the much larger photoproteins GFP* and luciferase, leads predominantly to misfolding and retention in the endoplasmic reticulum. However, the properly folded chimaeras are apparently still correctly targeted to the regulated, rather than the constitutive, secretory pathway. These chimaeras should therefore be valuable tools to monitor the exocytosis of insulin in real time.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


2006 ◽  
Vol 17 (7) ◽  
pp. 3009-3020 ◽  
Author(s):  
Johan-Owen De Craene ◽  
Jeff Coleman ◽  
Paula Estrada de Martin ◽  
Marc Pypaert ◽  
Scott Anderson ◽  
...  

The endoplasmic reticulum (ER) contains both cisternal and reticular elements in one contiguous structure. We identified rtn1Δ in a systematic screen for yeast mutants with altered ER morphology. The ER in rtn1Δ cells is predominantly cisternal rather than reticular, yet the net surface area of ER is not significantly changed. Rtn1-green fluorescent protein (GFP) associates with the reticular ER at the cell cortex and with the tubules that connect the cortical ER to the nuclear envelope, but not with the nuclear envelope itself. Rtn1p overexpression also results in an altered ER structure. Rtn proteins are found on the ER in a wide range of eukaryotes and are defined by two membrane-spanning domains flanking a conserved hydrophilic loop. Our results suggest that Rtn proteins may direct the formation of reticulated ER. We independently identified Rtn1p in a proteomic screen for proteins associated with the exocyst vesicle tethering complex. The conserved hydophilic loop of Rtn1p binds to the exocyst subunit Sec6p. Overexpression of this loop results in a modest accumulation of secretory vesicles, suggesting impaired exocyst function. The interaction of Rtn1p with the exocyst at the bud tip may trigger the formation of a cortical ER network in yeast buds.


2000 ◽  
Vol 11 (10) ◽  
pp. 3469-3484 ◽  
Author(s):  
Jean Monnat ◽  
Eva M. Neuhaus ◽  
Marius S. Pop ◽  
David M. Ferrari ◽  
Barbara Kramer ◽  
...  

Localization of soluble endoplasmic reticulum (ER) resident proteins is likely achieved by the complementary action of retrieval and retention mechanisms. Whereas the machinery involving the H/KDEL and related retrieval signals in targeting escapees back to the ER is well characterized, other mechanisms including retention are still poorly understood. We have identified a protein disulfide isomerase (Dd-PDI) lacking the HDEL retrieval signal normally found at the C terminus of ER residents in Dictyostelium discoideum. Here we demonstrate that its 57 residue C-terminal domain is necessary for intracellular retention of Dd-PDI and sufficient to localize a green fluorescent protein (GFP) chimera to the ER, especially to the nuclear envelope. Dd-PDI and GFP-PDI57 are recovered in similar cation-dependent complexes. The overexpression of GFP-PDI57 leads to disruption of endogenous PDI complexes and induces the secretion of PDI, whereas overexpression of a GFP-HDEL chimera induces the secretion of endogenous calreticulin, revealing the presence of two independent and saturable mechanisms. Finally, low-level expression of Dd-PDI but not of PDI truncated of its 57 C-terminal residues complements the otherwise lethal yeast TRG1/PDI1 null mutation, demonstrating functional disulfide isomerase activity and ER localization. Altogether, these results indicate that the PDI57 peptide contains ER localization determinants recognized by a conserved machinery present in D. discoideum and Saccharomyces cerevisiae.


Biochemistry ◽  
2013 ◽  
Vol 52 (19) ◽  
pp. 3332-3345 ◽  
Author(s):  
Deboleena Dipak Sarkar ◽  
Sarah K. Edwards ◽  
Justin A. Mauser ◽  
Allen M. Suarez ◽  
Maxwell A. Serowoky ◽  
...  

2018 ◽  
Vol 39 (1) ◽  
Author(s):  
Takuya Tomita ◽  
Shoshiro Hirayama ◽  
Yasuyuki Sakurai ◽  
Yuki Ohte ◽  
Hidehito Yoshihara ◽  
...  

ABSTRACT The proteasome is the proteolytic machinery at the center of regulated intracellular protein degradation and participates in various cellular processes. Maintaining the quality of the proteasome is therefore important for proper cell function. It is unclear, however, how proteasomes change over time and how aged proteasomes are disposed. Here, we show that the proteasome undergoes specific biochemical alterations as it ages. We generated Rpn11-Flag/enhanced green fluorescent protein (EGFP) tag-exchangeable knock-in mice and established a method for selective purification of old proteasomes in terms of their molecular age at the time after synthesis. The half-life of proteasomes in mouse embryonic fibroblasts isolated from these knock-in mice was about 16 h. Using this tool, we found increased association of Txnl1, Usp14, and actin with the proteasome and specific phosphorylation of Rpn3 at Ser 6 in 3-day-old proteasomes. We also identified CSNK2A2 encoding the catalytic α′ subunit of casein kinase II (CK2α′) as a responsible gene that regulates the phosphorylation and turnover of old proteasomes. These findings will provide a basis for understanding the mechanism of molecular aging of the proteasome.


Sign in / Sign up

Export Citation Format

Share Document