scholarly journals The Tom40 assembly process probed using the attachment of different intramitochondrial sorting signals

2012 ◽  
Vol 23 (20) ◽  
pp. 3936-3947 ◽  
Author(s):  
Takuya Shiota ◽  
Miyuki Maruyama ◽  
Mami Miura ◽  
Yasushi Tamura ◽  
Koji Yamano ◽  
...  

The TOM40 complex is a protein translocator in the mitochondrial outer membrane and consists of several different subunits. Among them, Tom40 is a central subunit that constitutes a protein-conducting channel by forming a β-barrel structure. To probe the nature of the assembly process of Tom40 in the outer membrane, we attached various mitochondrial presequences to Tom40 that possess sorting information for the intermembrane space (IMS), inner membrane, and matrix and would compete with the inherent Tom40 assembly process. We analyzed the mitochondrial import of those fusion proteins in vitro. Tom40 crossed the outer membrane and/or inner membrane even in the presence of various sorting signals. N-terminal anchorage of the attached presequence to the inner membrane did not prevent Tom40 from associating with the TOB/SAM complex, although it impaired its efficient release from the TOB complex in vitro but not in vivo. The IMS or matrix-targeting presequence attached to Tom40 was effective in substituting for the requirement for small Tim proteins in the IMS for the translocation of Tom40 across the outer membrane. These results provide insight into the mechanism responsible for the precise delivery of β-barrel proteins to the outer mitochondrial membrane.

2017 ◽  
Vol 217 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Xi Wu ◽  
Lanlan Li ◽  
Hui Jiang

Mitochondria are double-membraned organelles playing essential metabolic and signaling functions. The mitochondrial proteome is under surveillance by two proteolysis systems: the ubiquitin–proteasome system degrades mitochondrial outer-membrane (MOM) proteins, and the AAA proteases maintain the proteostasis of intramitochondrial compartments. We previously identified a Doa1–Cdc48-Ufd1-Npl4 complex that retrogradely translocates ubiquitinated MOM proteins to the cytoplasm for degradation. In this study, we report the unexpected identification of MOM proteins whose degradation requires the Yme1-Mgr1-Mgr3 i-AAA protease complex in mitochondrial inner membrane. Through immunoprecipitation and in vivo site-specific photo–cross-linking experiments, we show that both Yme1 adapters Mgr1 and Mgr3 recognize the intermembrane space (IMS) domains of the MOM substrates and facilitate their recruitment to Yme1 for proteolysis. We also provide evidence that the cytoplasmic domain of substrate can be dislocated into IMS by the ATPase activity of Yme1. Our findings indicate a proteolysis pathway monitoring MOM proteins from the IMS side and suggest that the MOM proteome is surveilled by mitochondrial and cytoplasmic quality control machineries in parallel.


2007 ◽  
Vol 179 (7) ◽  
pp. 1355-1363 ◽  
Author(s):  
Hidenori Otera ◽  
Yohsuke Taira ◽  
Chika Horie ◽  
Yurina Suzuki ◽  
Hiroyuki Suzuki ◽  
...  

The central channel Tom40 of the preprotein translocase of outer membrane (TOM) complex is thought to be responsible for the import of virtually all preproteins synthesized outside the mitochondria. In this study, we analyze the topogenesis of the peripheral benzodiazepine receptor (PBR), which integrates into the mitochondrial outer membrane (MOM) through five hydrophobic transmembrane segments (TMSs) and functions in cholesterol import into the inner membrane. Analyses of in vitro and in vivo import into TOM component–depleted mitochondria reveal that PBR import (1) depends on the import receptor Tom70 but requires neither the Tom20 and Tom22 import receptors nor the import channel Tom40, (2) shares the post-Tom70 pathway with the C-tail–anchored proteins, and (3) requires factors of the mitochondrial intermembrane space. Furthermore, membrane integration of mitofusins and mitochondrial ubiquitin ligase, the MOM proteins with two and four TMSs, respectively, proceeds through the same initial pathway. These findings reveal a previously unidentified pathway of the membrane integration of MOM proteins with multiple TMSs.


1996 ◽  
Vol 16 (8) ◽  
pp. 4035-4042 ◽  
Author(s):  
D A Court ◽  
F E Nargang ◽  
H Steiner ◽  
R S Hodges ◽  
W Neupert ◽  
...  

Tom22 is an essential component of the protein translocation complex (Tom complex) of the mitochondrial outer membrane. The N-terminal domain of Tom22 functions as a preprotein receptor in cooperation with Tom20. The role of the C-terminal domain of Tom22, which is exposed to the intermembrane space (IMS), in its own assembly into the Tom complex and in the import of other preproteins was investigated. The C-terminal domain of Tom22 is not essential for the targeting and assembly of this protein, as constructs lacking part or all of the IMS domain became imported into mitochondria and assembled into the Tom complex. Mutant strains of Neurospora expressing the truncated Tom22 proteins were generated by a novel procedure. These mutants displayed wild-type growth rates, in contrast to cells lacking Tom22, which are not viable. The import of proteins into the outer membrane and the IMS of isolated mutant mitochondria was not affected. Some but not all preproteins destined for the matrix and inner membrane were imported less efficiently. The reduced import was not due to impaired interaction of presequences with their specific binding site on the trans side of the outer membrane. Rather, the IMS domain of Tom22 appears to slightly enhance the efficiency of the transfer of these preproteins to the import machinery of the inner membrane.


2020 ◽  
Vol 295 (6) ◽  
pp. 1623-1636 ◽  
Author(s):  
Tomomi Kuwana ◽  
Louise E. King ◽  
Katia Cosentino ◽  
Julian Suess ◽  
Ana J. Garcia-Saez ◽  
...  

Permeabilization of the mitochondrial outer membrane is a key step in the intrinsic apoptosis pathway, triggered by the release of mitochondrial intermembrane space proteins into the cytoplasm. The BCL-2–associated X apoptosis regulator (BAX) protein critically contributes to this process by forming pores in the mitochondrial outer membrane. However, the relative roles of the mitochondrial residence of BAX and its oligomerization in promoting membrane permeabilization are unclear. To this end, using both cell-free and cellular experimental systems, including membrane permeabilization, size-exclusion chromatography-based oligomer, and retrotranslocation assays, along with confocal microscopy analysis, here we studied two BAX C-terminal variants, T182I and G179P. Neither variant formed large oligomers when activated in liposomes. Nevertheless, the G179P variant could permeabilize liposome membranes, suggesting that large BAX oligomers are not essential for the permeabilization. However, when G179P was transduced into BAX/BCL2 agonist killer (BAK) double-knockout mouse embryonic fibroblasts, its location was solely cytoplasmic, and it then failed to mediate cell death. In contrast, T182I was inefficient in both liposome insertion and permeabilization. Yet, when transduced into cells, BAXT182I resided predominantly on mitochondria, because of its slow retrotranslocation and mediated apoptosis as efficiently as WT BAX. We conclude that BAX's mitochondrial residence in vivo, regulated by both targeting and retrotranslocation, is more significant for its pro-apoptotic activity than its ability to insert and to form higher-order oligomers in model membranes. We propose that this finding should be taken into account when developing drugs that modulate BAX activity.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1008 ◽  
Author(s):  
Patrick Horten ◽  
Lilia Colina-Tenorio ◽  
Heike Rampelt

Metabolite carriers of the mitochondrial inner membrane are crucial for cellular physiology since mitochondria contribute essential metabolic reactions and synthesize the majority of the cellular ATP. Like almost all mitochondrial proteins, carriers have to be imported into mitochondria from the cytosol. Carrier precursors utilize a specialized translocation pathway dedicated to the biogenesis of carriers and related proteins, the carrier translocase of the inner membrane (TIM22) pathway. After recognition and import through the mitochondrial outer membrane via the translocase of the outer membrane (TOM) complex, carrier precursors are ushered through the intermembrane space by hexameric TIM chaperones and ultimately integrated into the inner membrane by the TIM22 carrier translocase. Recent advances have shed light on the mechanisms of TOM translocase and TIM chaperone function, uncovered an unexpected versatility of the machineries, and revealed novel components and functional crosstalk of the human TIM22 translocase.


2003 ◽  
Vol 23 (21) ◽  
pp. 7818-7828 ◽  
Author(s):  
Ann E. Frazier ◽  
Agnieszka Chacinska ◽  
Kaye N. Truscott ◽  
Bernard Guiard ◽  
Nikolaus Pfanner ◽  
...  

ABSTRACT The mitochondrial inner membrane contains numerous multispanning integral proteins. The precursors of these hydrophobic proteins are synthesized in the cytosol and therefore have to cross the mitochondrial outer membrane and intermembrane space to reach the inner membrane. While the import pathways of noncleavable multispanning proteins, such as the metabolite carriers, have been characterized in detail by the generation of translocation intermediates, little is known about the mechanism by which cleavable preproteins of multispanning proteins, such as Oxa1, are transferred from the outer membrane to the inner membrane. We have identified a translocation intermediate of the Oxa1 preprotein in the translocase of the outer membrane (TOM) and found that there are differences from the import mechanisms of carrier proteins. The intermembrane space domain of the receptor Tom22 supports the stabilization of the Oxa1 intermediate. Transfer of the Oxa1 preprotein to the inner membrane is not affected by inactivation of the soluble TIM complexes. Both the inner membrane potential and matrix heat shock protein 70 are essential to release the preprotein from the TOM complex, suggesting a close functional cooperation of the TOM complex and the presequence translocase of the inner membrane. We conclude that mitochondria employ different mechanisms for translocation of multispanning proteins across the aqueous intermembrane space.


2017 ◽  
Vol 114 (37) ◽  
pp. E7679-E7687 ◽  
Author(s):  
Moritz Niemann ◽  
Anke Harsman ◽  
Jan Mani ◽  
Christian D. Peikert ◽  
Silke Oeljeklaus ◽  
...  

Mitochondrial tRNA import is widespread, but the mechanism by which tRNAs are imported remains largely unknown. The mitochondrion of the parasitic protozoan Trypanosoma brucei lacks tRNA genes, and thus imports all tRNAs from the cytosol. Here we show that in T. brucei in vivo import of tRNAs requires four subunits of the mitochondrial outer membrane protein translocase but not the two receptor subunits, one of which is essential for protein import. The latter shows that it is possible to uncouple mitochondrial tRNA import from protein import. Ablation of the intermembrane space domain of the translocase subunit, archaic translocase of the outer membrane (ATOM)14, on the other hand, while not affecting the architecture of the translocase, impedes both protein and tRNA import. A protein import intermediate arrested in the translocation channel prevents both protein and tRNA import. In the presence of tRNA, blocking events of single-channel currents through the pore formed by recombinant ATOM40 were detected in electrophysiological recordings. These results indicate that both types of macromolecules use the same import channel across the outer membrane. However, while tRNA import depends on the core subunits of the protein import translocase, it does not require the protein import receptors, indicating that the two processes are not mechanistically linked.


2002 ◽  
Vol 76 (20) ◽  
pp. 10485-10496 ◽  
Author(s):  
Frédérique Weber-Lotfi ◽  
André Dietrich ◽  
Marcello Russo ◽  
Luisa Rubino

ABSTRACT Replication of the Carnation Italian ringspot virus genomic RNA in plant cells occurs in multivesicular bodies which develop from the mitochondrial outer membrane during infection. ORF1 in the viral genome encodes a 36-kDa protein, while ORF2 codes for the 95-kDa replicase by readthrough of the ORF1 stop codon. We have shown previously that the N-terminal part of ORF1 contains the information leading to vesiculation of mitochondria and that the 36-kDa protein localizes to mitochondria. Using infection, in vivo expression of green fluorescent protein fusions in plant and yeast cells, and in vitro mitochondrial integration assays, we demonstrate here that both the 36-kDa protein and the complete replicase are targeted to mitochondria and anchor to the outer membrane with the N terminus and C terminus on the cytosolic side. Analysis of deletion mutants indicated that the anchor sequence is likely to correspond approximately to amino acids 84 to 196, containing two transmembrane domains. No evidence for a matrix-targeting presequence was found, and the data suggest that membrane insertion of the viral proteins is mediated by an import receptor-independent signal-anchor mechanism relying on the two transmembrane segments and multiple recognition signals present in the N-terminal part of ORF1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fraser G. Ferens ◽  
William A. T. Summers ◽  
Ameet Bharaj ◽  
Jörg Stetefeld ◽  
Deborah A. Court

The voltage-dependent anion-selective channel (VDAC) is a porin in the mitochondrial outer membrane (MOM). Unlike bacterial porins, several mitochondrial β-barrels comprise an odd number of β-strands, as is the case for the 19-β-stranded VDAC. Previously, a variant of a VDAC from Neurospora crassa, VDAC-ΔC, lacking the predicted 19th β-strand, was found to form gated, anion-selective channels in artificial membranes. In vivo, the two C-terminal β-strands (β18 and β19) in VDAC form a β-hairpin necessary for import from the cytoplasm into mitochondria and the β-signal required for assembly in the mitochondrial outer membrane resides in β19. The current study demonstrated that the putative 18-stranded β-barrel formed by VDAC-ΔC can be imported and assembled in the MOM in vivo and can also partially rescue the phenotype associated with the deletion of VDAC from a strain of N. crassa. Furthermore, when expressed and purified from Escherichia coli, VDAC-ΔC can be folded into a β-strand-rich form in decyl-maltoside. Size exclusion chromatography (SEC) alone or combined with multi-angle light scattering (SEC-MALS) and analytical ultracentrifugation revealed that, unlike full-length VDACs, VDAC-ΔC can self-organize into dimers and higher order oligomers in the absence of sterol.


Sign in / Sign up

Export Citation Format

Share Document