Single-molecule binding characterization of primosomal protein PriA involved in replication restart

Author(s):  
Tzu-Yu Lee ◽  
Yi-Ching Li ◽  
Min-Guan Lin ◽  
Chwan-Deng Hsiao ◽  
Hung-Wen Li

DNA damages lead to stalled or collapsed replication forks. Replication restart primosomes re-initiate DNA synthesis at these stalled or collapsed DNA replication forks, which is important for bacterial survival. Primosomal...

2020 ◽  
Vol 6 (38) ◽  
pp. eabc0330 ◽  
Author(s):  
D. T. Gruszka ◽  
S. Xie ◽  
H. Kimura ◽  
H. Yardimci

During replication, nucleosomes are disrupted ahead of the replication fork, followed by their reassembly on daughter strands from the pool of recycled parental and new histones. However, because no previous studies have managed to capture the moment that replication forks encounter nucleosomes, the mechanism of recycling has remained unclear. Here, through real-time single-molecule visualization of replication fork progression in Xenopus egg extracts, we determine explicitly the outcome of fork collisions with nucleosomes. Most of the parental histones are evicted from the DNA, with histone recycling, nucleosome sliding, and replication fork stalling also occurring but at lower frequencies. Critically, we find that local histone recycling becomes dominant upon depletion of endogenous histones from extracts, revealing that free histone concentration is a key modulator of parental histone dynamics at the replication fork. The mechanistic details revealed by these studies have major implications for our understanding of epigenetic inheritance.


2005 ◽  
Vol 33 (6) ◽  
pp. 1471-1473 ◽  
Author(s):  
E.L. Bolt

Overcoming DNA replication fork blocks is essential for completing genome duplication and cell division. Archaea and eukaryotes drive replication using essentially the same protein machinery. Archaea may be a valuable resource for identifying new helicase components at advancing forks and/or in replication-restart pathways. As described here, these may be relevant to understanding genome instability in metazoans.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Sunetra Roy ◽  
Karl-Heinz Tomaszowski ◽  
Jessica W Luzwick ◽  
Soyoung Park ◽  
Jun Li ◽  
...  

Classically, p53 tumor suppressor acts in transcription, apoptosis, and cell cycle arrest. Yet, replication-mediated genomic instability is integral to oncogenesis, and p53 mutations promote tumor progression and drug-resistance. By delineating human and murine separation-of-function p53 alleles, we find that p53 null and gain-of-function (GOF) mutations exhibit defects in restart of stalled or damaged DNA replication forks that drive genomic instability, which isgenetically separable from transcription activation. By assaying protein-DNA fork interactions in single cells, we unveil a p53-MLL3-enabled recruitment of MRE11 DNA replication restart nuclease. Importantly, p53 defects or depletion unexpectedly allow mutagenic RAD52 and POLθ pathways to hijack stalled forks, which we find reflected in p53 defective breast-cancer patient COSMIC mutational signatures. These data uncover p53 as a keystone regulator of replication homeostasis within a DNA restart network. Mechanistically, this has important implications for development of resistance in cancer therapy. Combined, these results define an unexpected role for p53-mediated suppression of replication genome instability.


2006 ◽  
Vol 26 (18) ◽  
pp. 6993-7004 ◽  
Author(s):  
Christo P. Christov ◽  
Timothy J. Gardiner ◽  
Dávid Szüts ◽  
Torsten Krude

ABSTRACT Noncoding RNAs are recognized increasingly as important regulators of fundamental biological processes, such as gene expression and development, in eukaryotes. We report here the identification and functional characterization of the small noncoding human Y RNAs (hY RNAs) as novel factors for chromosomal DNA replication in a human cell-free system. In addition to protein fractions, hY RNAs are essential for the establishment of active chromosomal DNA replication forks in template nuclei isolated from late-G1-phase human cells. Specific degradation of hY RNAs leads to the inhibition of semiconservative DNA replication in late-G1-phase template nuclei. This inhibition is negated by resupplementation of hY RNAs. All four hY RNAs (hY1, hY3, hY4, and hY5) can functionally substitute for each other in this system. Mutagenesis of hY1 RNA showed that the binding site for Ro60 protein, which is required for Ro RNP assembly, is not essential for DNA replication. Degradation of hY1 RNA in asynchronously proliferating HeLa cells by RNA interference reduced the percentages of cells incorporating bromodeoxyuridine in vivo. These experiments implicate a functional role for hY RNAs in human chromosomal DNA replication.


2019 ◽  
Author(s):  
Sujan Devbhandari ◽  
Dirk Remus

ABSTRACTThe coordination of DNA unwinding and synthesis at replication forks promotes efficient and faithful replication of chromosomal DNA. Using the reconstituted budding yeast DNA replication system, we demonstrate that Pol ε variants harboring catalytic point mutations in the Pol2 polymerase domain, contrary to Pol2 polymerase domain deletions, inhibit DNA synthesis at replication forks by displacing Pol δ from PCNA/primer-template junctions, causing excessive DNA unwinding by the replicative DNA helicase, CMG, uncoupled from DNA synthesis. Mutations that suppress the inhibition of Pol δ by Pol ε restore viability in Pol2 polymerase point mutant cells. We also observe uninterrupted DNA unwinding at replication forks upon dNTP depletion or chemical inhibition of DNA polymerases, demonstrating that leading strand synthesis is not tightly coupled to DNA unwinding by CMG. Importantly, the Rad53 kinase controls excessive DNA unwinding at replication forks by limiting CMG helicase activity, suggesting a mechanism for fork-stabilization by the replication checkpoint.


2022 ◽  
Author(s):  
Clemence Claussin ◽  
Jacob Vazquez ◽  
Iestyn Whitehouse

Fundamental aspects of DNA replication, such as the anatomy of replication stall sites, how replisomes are influenced by gene transcription and whether the progression of sister replisomes is coordinated are poorly understood. Available techniques do not allow the precise mapping of the positions of individual replisomes on chromatin. We have developed a new method called Replicon-seq that entails the excision of full-length replicons by controlled nuclease cleavage at replication forks. Replicons are sequenced using Nanopore, which provides a single molecule readout of long DNA molecules. Using Replicon-seq, we have investigated replisome movement along chromatin. We found that sister replisomes progress with remarkable consistency from the origin of replication but function autonomously. Replication forks that encounter obstacles pause for a short duration but rapidly resume synthesis. The helicase Rrm3 plays a critical role both in mitigating the effect of protein barriers and facilitating efficient termination. Replicon-seq provides an unprecedented means of defining replisome movement across the genome.


2017 ◽  
Author(s):  
Divya Ramalingam Iyer ◽  
Nicholas Rhind

AbstractIn response to DNA damage during S phase, cells slow DNA replication. This slowing is orchestrated by the intra-S checkpoint and involves inhibition of origin firing and reduction of replication fork speed. Slowing of replication allows for tolerance of DNA damage and suppresses genomic instability. Although the mechanisms of origin inhibition by the intra-S checkpoint are understood, major questions remain about how the checkpoint regulates replication forks: Does the checkpoint regulate the rate of fork progression? Does the checkpoint affect all forks, or only those encountering damage? Does the checkpoint facilitate the replication of polymerase-blocking lesions? To address these questions, we have analyzed the checkpoint in the fission yeast Schizosaccharomyces pombe using a single-molecule DNA combing assay, which allows us to unambiguously separate the contribution of origin and fork regulation towards replication slowing, and allows us to investigate the behavior of individual forks. Moreover, we have interrogated the role of forks interacting with individual sites of damage by using three damaging agents—MMS, 4NQO and bleomycin—that cause similar levels of replication slowing with very different frequency of DNA lesions. We find that the checkpoint slows replication by inhibiting origin firing, but not by decreasing fork rates. However, the checkpoint appears to facilitate replication of damaged templates, allowing forks to more quickly pass lesions. Finally, using a novel analytic approach, we rigorously identify fork stalling events in our combing data and show that they play a previously unappreciated role in shaping replication kinetics in response to DNA damage.Author SummaryFaithful duplication of the genome is essential for genetic stability of organisms and species. To ensure faithful duplication, cells must be able to replicate damaged DNA. To do so, they employ checkpoints that regulate replication in response to DNA damage. However, the mechanisms by which checkpoints regulate DNA replication forks, the macromolecular machines that contain the helicases and polymerases required to unwind and copy the parental DNA, is unknown. We have used DNA combing, a single-molecule technique that allows us to monitor the progression of individual replication forks, to characterize the response of fission yeast replication forks to DNA damage that blocks the replicative polymerases. We find that forks pass most lesions with only a brief pause and that this lesion bypass is checkpoint independent. However, at a low frequency, forks stall at lesions, and that the checkpoint is required to prevent these stalls from accumulating single-stranded DNA. Our results suggest that the major role of the checkpoint is not to regulate the interaction of replication forks with DNA damage, per se, but to mitigate the consequences of fork stalling when forks are unable to successfully navigate DNA damage on their own.


2018 ◽  
Author(s):  
Kelsey Whinn ◽  
Gurleen Kaur ◽  
Jacob S. Lewis ◽  
Grant Schauer ◽  
Stefan Müller ◽  
...  

DNA replication occurs on chromosomal DNA while processes such as DNA repair, recombination and transcription continue. However, we have limited experimental tools to study the consequences of collisions between DNA-bound molecular machines. Here, we repurpose a catalytically inactivated Cas9 (dCas9) construct fused to the photo-stable dL5 protein fluoromodule as a novel, targetable protein-DNA roadblock for studying replication fork arrest at the single-molecule level in vitro as well as in vivo. We find that the specifically bound dCas9–guideRNA complex arrests viral, bacterial and eukaryotic replication forks in vitro.


2020 ◽  
Vol 118 (3) ◽  
pp. 376a
Author(s):  
Alex L. Hargreaves ◽  
Aisha Syeda ◽  
Mark C. Leake

Sign in / Sign up

Export Citation Format

Share Document