scholarly journals The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17

2014 ◽  
Vol 25 (8) ◽  
pp. 1327-1337 ◽  
Author(s):  
Peidu Jiang ◽  
Taki Nishimura ◽  
Yuriko Sakamaki ◽  
Eisuke Itakura ◽  
Tomohisa Hatta ◽  
...  

Membrane fusion is generally controlled by Rabs, soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs), and tethering complexes. Syntaxin 17 (STX17) was recently identified as the autophagosomal SNARE required for autophagosome–lysosome fusion in mammals and Drosophila. In this study, to better understand the mechanism of autophagosome–lysosome fusion, we searched for STX17-interacting proteins. Immunoprecipitation and mass spectrometry analysis identified vacuolar protein sorting 33A (VPS33A) and VPS16, which are components of the homotypic fusion and protein sorting (HOPS)–tethering complex. We further confirmed that all HOPS components were coprecipitated with STX17. Knockdown of VPS33A, VPS16, or VPS39 blocked autophagic flux and caused accumulation of STX17- and microtubule-associated protein light chain (LC3)–positive autophagosomes. The endocytic pathway was also affected by knockdown of VPS33A, as previously reported, but not by knockdown of STX17. By contrast, ultraviolet irradiation resistance–associated gene (UVRAG), a known HOPS-interacting protein, did not interact with the STX17–HOPS complex and may not be directly involved in autophagosome–lysosome fusion. Collectively these results suggest that, in addition to its well-established function in the endocytic pathway, HOPS promotes autophagosome–lysosome fusion through interaction with STX17.

2011 ◽  
Vol 10 (9) ◽  
pp. 1207-1218 ◽  
Author(s):  
Haresha S. Samaranayake ◽  
Ann E. Cowan ◽  
Lawrence A. Klobutcher

ABSTRACT Vacuolar protein sorting 13 (VPS13) proteins have been studied in a number of organisms, and mutations in VPS13 genes have been implicated in two human genetic disorders, but the function of these proteins is poorly understood. The TtVPS13A protein was previously identified in a mass spectrometry analysis of the Tetrahymena thermophila phagosome proteome (M. E. Jacobs et al., Eukaryot. Cell 5:1990–2000, 2006), suggesting that it is involved in phagocytosis. In this study, we analyzed the structure of the macronuclear TtVPS13A gene, which was found to be composed of 17 exons spanning 12.5 kb and was predicted to encode a protein of 3,475 amino acids (aa). A strain expressing a TtVPS13A-green fluorescent protein (GFP) fusion protein was constructed, and the protein was found to associate with the phagosome membrane during the entire cycle of phagocytosis. In addition, Tetrahymena cells with a TtVPS13A knockout mutation displayed impaired phagocytosis. Specifically, they grew slowly under conditions where phagocytosis is essential, they formed few phagosomes, and the digestion of phagosomal contents was delayed compared to wild-type cells. Overall, these results provide evidence that the TtVPS13A protein is required for efficient phagocytosis.


2008 ◽  
Vol 19 (12) ◽  
pp. 5059-5071 ◽  
Author(s):  
Lai Xu ◽  
Mathew E. Sowa ◽  
Jing Chen ◽  
Xue Li ◽  
Steven P. Gygi ◽  
...  

Fused Toes (FTS) is a member of a small group of inactive variant E2 ubiquitin-conjugating enzyme domain-containing proteins of unknown function. Through proteomic analysis of FTS complexes purified from human embryonic kidney 293T cells, we identified a new multiprotein complex, the FHF complex, containing FTS, members of the microtubule-binding Hook family of coiled-coil proteins (Hook1, Hook2, and Hook3), and a previously uncharacterized 107-kDa protein, FTS and Hook Interacting Protein (FHIP). FTS associated with a conserved C-terminal motif in Hook proteins in the yeast two-hybrid system and in tissue culture cells, and Hook proteins were found to form homo- and heterodimers. The ∼500-kDa FHF complex contained all three Hook proteins, and small interfering RNA depletion experiments suggest that Hook proteins can interact interchangeably within this complex. Hook proteins as well as FTS interact with members of both the class B and class C components of the homotypic vesicular protein sorting (HOPS) complex. Depletion of FTS by RNA interference affects both the trafficking of epidermal growth factor from early-to-late endosome/lysosomes and the efficiency by which overexpression of the HOPS component Vps18 promotes clustering of lysosomal-associated membrane protein 1-positive endosome/lysosomes. These data suggest that the FTS/Hook/FHIP complex functions to promote vesicle trafficking and/or fusion via the HOPS complex.


2015 ◽  
Vol 26 (2) ◽  
pp. 305-315 ◽  
Author(s):  
Amy Orr ◽  
William Wickner ◽  
Scott F. Rusin ◽  
Arminja N. Kettenbach ◽  
Michael Zick

Fusion of yeast vacuoles requires the Rab GTPase Ypt7p, four SNAREs (soluble N-ethylmaleimide–sensitive factor attachment protein receptors), the SNARE disassembly chaperones Sec17p/Sec18p, vacuolar lipids, and the Rab-effector complex HOPS (homotypic fusion and vacuole protein sorting). Two HOPS subunits have direct affinity for Ypt7p. Although vacuolar fusion has been reconstituted with purified components, the functional relationships between individual lipids and Ypt7p:GTP have remained unclear. We now report that acidic lipids function with Ypt7p as coreceptors for HOPS, supporting membrane tethering and fusion. After phosphorylation by the vacuolar kinase Yck3p, phospho-HOPS needs both Ypt7p:GTP and acidic lipids to support fusion.


2021 ◽  
Author(s):  
Luther J. Davis ◽  
Nicholas A. Bright ◽  
James R. Edgar ◽  
Michael D.J. Parkinson ◽  
Lena Wartosch ◽  
...  

To provide insights into the kiss-and-run and full fusion events resulting in endocytic delivery to lysosomes, we investigated conditions causing increased tethering and pore formation between late endocytic organelles in HeLa cells. Knockout of the SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) VAMP7 and VAMP8 showed, by electron microscopy, the accumulation of tethered LAMP (lysosome associated membrane protein)-carrier vesicles around multivesicular bodies, as well as the appearance of ‘hourglass’ profiles of late endocytic organelles attached by filamentous tethers, but did not prevent endocytic delivery to lysosomal hydrolases. Subsequent depletion of the SNARE YKT6 reduced this delivery, consistent with it compensating for the absence of VAMP7 and VAMP8. We also investigated filamentous tethering between multivesicular bodies and enlarged endolysosomes following depletion of CHMP6 (charged multi-vesicular body protein 6) and provide the first evidence that pore formation commences at the edge of tether arrays, with pore expansion required for full membrane fusion.


2000 ◽  
Vol 11 (7) ◽  
pp. 2327-2333 ◽  
Author(s):  
Diane McVey Ward ◽  
Jonathan Pevsner ◽  
Matthew A. Scullion ◽  
Michael Vaughn ◽  
Jerry Kaplan

Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome–lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome–lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome–lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome–lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages.


2018 ◽  
Vol 44 (4) ◽  
pp. 462-472
Author(s):  
Secil Akyildiz Demir ◽  
Volkan Seyrantepe

Abstract Background Cytoplasmic sialidase (NEU2) plays an active role in removing sialic acids from oligosaccharides, glycopeptides, and gangliosides in mammalian cells. NEU2 is involved in various cellular events, including cancer metabolism, neuronal and myoblast differentiation, proliferation, and hypertrophy. However, NEU2-interacting protein(s) within the cell have not been identified yet. Objective The aim of this study is to investigate NEU2 interacting proteins using two-step affinity purification (TAP) strategy combined with mass spectrometry analysis. Methods In this study, NEU2 gene was cloned into the pCTAP expression vector and transiently transfected to COS-7 cells by using PEI. The most efficient expression time of NEU2- tag protein was determined by real-time PCR and Western blot analysis. NEU2-interacting protein(s) were investigated by using TAP strategy combined with two different mass spectrometry experiment; LC-MS/MS and MALDI TOF/TOF. Results Here, mass spectrometry analysis showed four proteins; α-actin, β-actin, calmodulin and histone H1.2 proteins are associated with NEU2. The interactions between NEU2 and actin filaments were verified by Western blot analysis and immunofluorescence analysis. Conclusions Our study suggests that association of NEU2 with actin filaments and other protein(s) could be important for understanding the biological role of NEU2 in mammalian cells.


2004 ◽  
Vol 15 (3) ◽  
pp. 1197-1210 ◽  
Author(s):  
Simon C. W. Richardson ◽  
Stanley C. Winistorfer ◽  
Viviane Poupon ◽  
J. Paul Luzio ◽  
Robert C. Piper

In Saccharomyces cerevisiae, the class C vacuole protein sorting (Vps) proteins, together with Vam2p/Vps41p and Vam6p/Vps39p, form a complex that interacts with soluble N-ethylmaleimide-sensitive factor attachment protein receptor and Rab proteins to “tether” vacuolar membranes before fusion. To determine a role for the corresponding mammalian orthologues, we examined the function, localization, and protein interactions of endogenous mVps11, mVps16, mVps18, mVam2p, and mVam6. We found a significant proportion of these proteins localized to early endosome antigen-1 and transferrin receptor-positive early endosomes in Vero, normal rat kidney, and Chinese hamster ovary cells. Immunoprecipitation experiments showed that mVps18 not only interacted with Syntaxin (Syn)7, vesicle-associated membrane protein 8, and Vti1-b but also with Syn13, Syn6, and the Sec1/Munc18 protein mVps45, which catalyze early endosomal fusion events. Moreover, anti-mVps18 antibodies inhibited early endosome fusion in vitro. Mammalian mVps18 also associated with mVam2 and mVam6 as well as with the microtubule-associated Hook1 protein, an orthologue of the Drosophila Hook protein involved in endosome biogenesis. Using in vitro binding and immunofluorescence experiments, we found that mVam2 and mVam6 also associated with microtubules, whereas mVps18, mVps16, and mVps11 associated with actin filaments. These data indicate that the late Vps proteins function during multiple soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated fusion events throughout the endocytic pathway and that their activity may be coordinated with cytoskeletal function.


2012 ◽  
Vol 448 (3) ◽  
pp. 365-372 ◽  
Author(s):  
Terry L. Sasser ◽  
Mark Padolina ◽  
Rutilio A. Fratti

Ybt1p is a class C ABC transporter (ATP-binding cassette transporter) that is localized to the vacuole of Saccharomyces cerevisiae. Although Ybt1p was originally identified as a bile acid transporter, it has also been found to function in other capacities, including the translocation of phosphatidylcholine to the vacuole lumen, and the regulation of Ca2+ homoeostasis. In the present study we found that deletion of YBT1 enhanced in vitro homotypic vacuole fusion by up to 50% relative to wild-type vacuoles. The increased vacuole fusion was not due to aberrant protein sorting of SNAREs (soluble N-ethylmaleimide-sensitive factor-attachment protein receptors) or recruitment of factors from the cytosol such as Ypt7p and the HOPS (homotypic fusion and vacuole protein sorting) tethering complex. In addition, ybt1Δ vacuoles displayed no observable differences in the formation of SNARE complexes, interactions between SNAREs and HOPS, or formation of vertex microdomains. However, the absence of Ybt1p caused significant changes in Ca2+ transport during fusion. One difference was the prolonged Ca2+ influx exhibited by ybt1Δ vacuoles at the start of the fusion reaction. We also observed a striking delay in SNARE-dependent Ca2+ efflux. As vacuole fusion can be inhibited by high Ca2+ concentrations, we suggest that the delayed efflux in ybt1Δ vacuoles leads to the enhanced SNARE function.


1994 ◽  
Vol 125 (2) ◽  
pp. 283-298 ◽  
Author(s):  
B Singer-Krüger ◽  
H Stenmark ◽  
A Düsterhöft ◽  
P Philippsen ◽  
J S Yoo ◽  
...  

The small GTPase rab5 has been shown to represent a key regulator in the endocytic pathway of mammalian cells. Using a PCR approach to identify rab5 homologs in Saccharomyces cerevisiae, two genes encoding proteins with 54 and 52% identity to rab5, YPT51 and YPT53 have been identified. Sequencing of the yeast chromosome XI has revealed a third rab5-like gene, YPT52, whose protein product exhibits a similar identity to rab5 and the other two YPT gene products. In addition to the high degree of identity/homology shared between rab5 and Ypt51p, Ypt52p, and Ypt53p, evidence for functional homology between the mammalian and yeast proteins is provided by phenotypic characterization of single, double, and triple deletion mutants. Endocytic delivery to the vacuole of two markers, lucifer yellow CH (LY) and alpha-factor, was inhibited in delta ypt51 mutants and aggravated in the double ypt51ypt52 and triple ypt51ypt52ypt53 mutants, suggesting a requirement for these small GTPases in endocytic membrane traffic. In addition to these defects, the here described ypt mutants displayed a number of other phenotypes reminiscent of some vacuolar protein sorting (vps) mutants, including a differential delay in growth and vacuolar protein maturation, partial missorting of a soluble vacuolar hydrolase, and alterations in vacuole acidification and morphology. In fact, vps21 represents a mutant allele of YPT51 (Emr, S., personal communication). Altogether, these data suggest that Ypt51p, Ypt52p, and Ypt53p are required for transport in the endocytic pathway and for correct sorting of vacuolar hydrolases suggesting a possible intersection of the endocytic with the vacuolar sorting pathway.


Sign in / Sign up

Export Citation Format

Share Document