scholarly journals Transcription regulation during stable elongation by a reversible halt of RNA polymerase II

2014 ◽  
Vol 25 (14) ◽  
pp. 2190-2198 ◽  
Author(s):  
Tim Patrick Kaminski ◽  
Jan Peter Siebrasse ◽  
Ulrich Kubitscheck

Regulation of RNA polymerase II (RNAPII) during transcription is essential for controlling gene expression. Here we report that the transcriptional activity of RNAPII at the Balbiani ring 2.1 gene could be halted during stable elongation in salivary gland cells of Chironomus tentans larvae for extended time periods in a regulated manner. The transcription halt was triggered by heat shock and affected all RNAPII independently of their position in the gene. During the halt, incomplete transcripts and RNAPII remained at the transcription site, the phosphorylation state of RNAPII was unaltered, and the transcription bubbles remained open. The transcription of halted transcripts was resumed upon relief of the heat shock. The observed mechanism allows cells to interrupt transcription for extended time periods and rapidly reactivate it without the need to reinitiate transcription of the complete gene. Our results suggest a so-far-unknown level of transcriptional control in eukaryotic cells.

1987 ◽  
Vol 7 (12) ◽  
pp. 4308-4316
Author(s):  
E Egyházi ◽  
E Durban

Purified anti-topoisomerase I immunoglobulin G (IgG) was microinjected into nuclei of Chironomus tentans salivary gland cells, and the effect on DNA transcription was investigated. Synthesis of nucleolar preribosomal 38S RNA by RNA polymerase I and of chromosomal Balbiani ring RNA by RNA polymerase II was inhibited by about 80%. The inhibitory action of anti-topoisomerase I IgG could be reversed by the addition of exogenous topoisomerase I. Anti-topoisomerase I IgG had less effect on RNA polymerase II-promoted activity of other less efficiently transcribing heterogeneous nuclear RNA genes. The pattern of inhibition of growing nascent Balbiani ring chains indicated that the transcriptional process was interrupted at the level of chain elongation. The highly decondensed state of active Balbiani ring chromatin, however, remained unaffected after injection of topoisomerase I antibodies. These data are consistent with the interpretation that topoisomerase I is an essential component in the transcriptional process but not in the maintenance of the decondensed state of active chromatin.


1999 ◽  
Vol 77 (4) ◽  
pp. 367-374 ◽  
Author(s):  
Sébastien B Lavoie ◽  
Alexandra L Albert ◽  
Alain Thibodeau ◽  
Michel Vincent

The phosphorylation of the carboxy-terminal domain of the largest subunit of RNA polymerase II plays an important role in the regulation of transcriptional activity and is also implicated in pre-mRNA processing. Different stresses, such as a heat shock, induce a marked alteration in the phosphorylation of this domain. The expression of stress genes by RNA polymerase II, to the detriment of other genes, could be attributable to such modifications of the phosphorylation sites. Using two phosphodependent antibodies recognizing distinct hyperphosphorylated forms of RNA polymerase II largest subunit, we studied the phosphorylation state of the subunit in different species after heat shocks of varying intensities. One of these antibodies, CC-3, preferentially recognizes the carboxy-terminal domain of the largest subunit under normal conditions, but its reactivity is diminished during stress. In contrast, the other antibody used, MPM-2, demonstrated a strong reactivity after a heat shock in most species studied. Therefore, CC-3 and MPM-2 antibodies discriminate between phosphoisomers that may be functionally different. Our results further indicate that the pattern of phosphorylation of RNA polymerase II in most species varies in response to environmental stress.Key words: RNA polymerase II, heat shock, phosphorylation, CC-3, MPM-2.


1987 ◽  
Vol 7 (12) ◽  
pp. 4308-4316 ◽  
Author(s):  
E Egyházi ◽  
E Durban

Purified anti-topoisomerase I immunoglobulin G (IgG) was microinjected into nuclei of Chironomus tentans salivary gland cells, and the effect on DNA transcription was investigated. Synthesis of nucleolar preribosomal 38S RNA by RNA polymerase I and of chromosomal Balbiani ring RNA by RNA polymerase II was inhibited by about 80%. The inhibitory action of anti-topoisomerase I IgG could be reversed by the addition of exogenous topoisomerase I. Anti-topoisomerase I IgG had less effect on RNA polymerase II-promoted activity of other less efficiently transcribing heterogeneous nuclear RNA genes. The pattern of inhibition of growing nascent Balbiani ring chains indicated that the transcriptional process was interrupted at the level of chain elongation. The highly decondensed state of active Balbiani ring chromatin, however, remained unaffected after injection of topoisomerase I antibodies. These data are consistent with the interpretation that topoisomerase I is an essential component in the transcriptional process but not in the maintenance of the decondensed state of active chromatin.


1998 ◽  
Vol 242 (1) ◽  
pp. 211-221 ◽  
Author(s):  
E. Egyházi ◽  
A. Ossoinak ◽  
J.M. Lee ◽  
A.L. Greenleaf ◽  
T.P. Mäkelä ◽  
...  

1990 ◽  
Vol 10 (11) ◽  
pp. 6041-6045
Author(s):  
A E Rougvie ◽  
J T Lis

Drosophila hsp70 genes have an RNA polymerase II molecule paused at their 5' ends in uninduced cells. In this study we have shown that this pausing also occurs on other heat shock and constitutively expressed genes. We propose that a rate-limiting step in early elongation occurs in many Drosophila genes and may be a target for transcriptional regulation.


1990 ◽  
Vol 10 (11) ◽  
pp. 6041-6045 ◽  
Author(s):  
A E Rougvie ◽  
J T Lis

Drosophila hsp70 genes have an RNA polymerase II molecule paused at their 5' ends in uninduced cells. In this study we have shown that this pausing also occurs on other heat shock and constitutively expressed genes. We propose that a rate-limiting step in early elongation occurs in many Drosophila genes and may be a target for transcriptional regulation.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Sign in / Sign up

Export Citation Format

Share Document