scholarly journals Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C

2014 ◽  
Vol 25 (18) ◽  
pp. 2807-2816 ◽  
Author(s):  
Svetlana Khakhina ◽  
Katrina F. Cooper ◽  
Randy Strich

The yeast cyclin C-Cdk8 kinase forms a complex with Med13p to repress the transcription of genes involved in the stress response and meiosis. In response to oxidative stress, cyclin C displays nuclear to cytoplasmic relocalization that triggers mitochondrial fission and promotes programmed cell death. In this report, we demonstrate that Med13p mediates cyclin C nuclear retention in unstressed cells. Deleting MED13 allows aberrant cytoplasmic cyclin C localization and extensive mitochondrial fragmentation. Loss of Med13p function resulted in mitochondrial dysfunction and hypersensitivity to oxidative stress–induced programmed cell death that were dependent on cyclin C. The regulatory system controlling cyclin C-Med13p interaction is complex. First, a previous study found that cyclin C phosphorylation by the stress-activated MAP kinase Slt2p is required for nuclear to cytoplasmic translocation. This study found that cyclin C-Med13p association is impaired when the Slt2p target residue is substituted with a phosphomimetic amino acid. The second step involves Med13p destruction mediated by the 26S proteasome and cyclin C-Cdk8p kinase activity. In conclusion, Med13p maintains mitochondrial structure, function, and normal oxidative stress sensitivity through cyclin C nuclear retention. Releasing cyclin C from the nucleus involves both its phosphorylation by Slt2p coupled with Med13p destruction.

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Chunyan Jin ◽  
Andrey V. Parshin ◽  
Ira Daly ◽  
Randy Strich ◽  
Katrina F. Cooper

Mtl1 is a member of a cell wall sensor family that monitors cell wall integrity in budding yeast. In response to cell wall stress, Mtl1 activates the cell wall integrity (CWI) MAP kinase pathway which transmits this signal to the nucleus to effect changes in gene expression. One target of the CWI MAP kinase is cyclin C, a negative regulator of stress response genes. CWI activation results in cyclin C relocalization from the nucleus to the cytoplasm where it stimulates programmed cell death (PCD) before it is destroyed. This report demonstrates that under low oxidative stress conditions, a combination of membrane sensors, Mtl1 and either Wsc1 or Mid2, are required jointly to transmit the oxidative stress signal to initiate cyclin C destruction. However, when exposed to elevated oxidative stress, additional pathways independent of these three sensor proteins are activated to destroy cyclin C. In addition,N-glycosylation is important for Mtl1 function as mutating the receptor residue (Asn42) or an enzyme required for synthesis ofN-acetylglucosamine (Gfa1) reduces sensor activity. Finally, combininggfa1-1with the cyclin C null allele induces a severe synthetic growth defect. This surprising result reveals a previously unknown genetic interaction between cyclin C and plasma membrane integrity.


2020 ◽  
Vol 31 (1) ◽  
pp. 3-10
Author(s):  
V. S. Nedzvetsky ◽  
V. Ya. Gasso ◽  
A. M. Hahut ◽  
I. A. Hasso

Cadmium is a common transition metal that entails an extremely wide range of toxic effects in humans and animals. The cytotoxicity of cadmium ions and its compounds is due to various genotoxic effects, including both DNA damage and chromosomal aberrations. Some bone diseases, kidney and digestive system diseases are determined as pathologies that are closely associated with cadmium intoxication. In addition, cadmium is included in the list of carcinogens because of its ability to initiate the development of tumors of several forms of cancer under conditions of chronic or acute intoxication. Despite many studies of the effects of cadmium in animal models and cohorts of patients, in which cadmium effects has occurred, its molecular mechanisms of action are not fully understood. The genotoxic effects of cadmium and the induction of programmed cell death have attracted the attention of researchers in the last decade. In recent years, the results obtained for in vivo and in vitro experimental models have shown extremely high cytotoxicity of sublethal concentrations of cadmium and its compounds in various tissues. One of the most studied causes of cadmium cytotoxicity is the development of oxidative stress and associated oxidative damage to macromolecules of lipids, proteins and nucleic acids. Brain cells are most sensitive to oxidative damage and can be a critical target of cadmium cytotoxicity. Thus, oxidative damage caused by cadmium can initiate genotoxicity, programmed cell death and inhibit their viability in the human and animal brains. To test our hypothesis, cadmium cytotoxicity was assessed in vivo in U251 glioma cells through viability determinants and markers of oxidative stress and apoptosis. The result of the cell viability analysis showed the dose-dependent action of cadmium chloride in glioma cells, as well as the generation of oxidative stress (p <0.05). Calculated for 48 hours of exposure, the LD50 was 3.1 μg×ml-1. The rates of apoptotic death of glioma cells also progressively increased depending on the dose of cadmium ions. A high correlation between cadmium concentration and apoptotic response (p <0.01) was found for cells exposed to 3–4 μg×ml-1 cadmium chloride. Moreover, a significant correlation was found between oxidative stress (lipid peroxidation) and induction of apoptosis. The results indicate a strong relationship between the generation of oxidative damage by macromolecules and the initiation of programmed cell death in glial cells under conditions of low doses of cadmium chloride. The presented results show that cadmium ions can induce oxidative damage in brain cells and inhibit their viability through the induction of programmed death. Such effects of cadmium intoxication can be considered as a model of the impact of heavy metal pollution on vertebrates.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Michael Coronado ◽  
Giovanni Fajardo ◽  
Kim Nguyen ◽  
Mingming Zhao ◽  
Kristina Bezold Kooiker ◽  
...  

Mitochondria play a dual role in the heart, responsible for meeting energetic demands and regulating cell death. Current paradigms hold that mitochondrial fission and fragmentation are the result of pathologic stresses such as ischemia, are an indicator of poor mitochondrial health, and lead to mitophagy and cell death. However, recent studies demonstrate that inhibiting fission also results in cardiac impairment, suggesting that fission is important for maintaining normal mitochondrial function. In this study, we identify a novel role for mitochondrial fragmentation as a normal physiological adaptation to increased energetic demand. Using two models of exercise, we demonstrate that “physiologic” mitochondrial fragmentation occurs, results in enhanced mitochondrial function, and is mediated through beta 1-adrenergic receptor signaling. Similar to pathologic fragmentation, physiologic fragmentation is induced by activation of Drp1; however, unlike pathologic fragmentation, membrane potential is maintained and regulators of mitophagy are downregulated. To confirm the role of fragmentation as a physiological adaptation to exercise, we inhibited the pro-fission mediator Drp1 in mice using the peptide inhibitor P110 and had mice undergo exercise. Mice treated with P110 had significantly decreased exercise capacity, decreased fragmentation and inactive Drp1 vs controls. To further confirm these findings, we generated cardiac-specific Drp1 KO mice and had them undergo exercise. Mice with cardiac specific Drp1 KO had significantly decreased exercise capacity and abnormally large mitochondria compared to controls. These findings indicate the requirement for physiological mitochondrial fragmentation to meet the energetic demands of exercise and support the still evolving conceptual framework, where fragmentation plays a role in the balance between mitochondrial maintenance of normal physiology and response to disease.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Ida Perrotta ◽  
Valentina Carito ◽  
Emilio Russo ◽  
Sandro Tripepi ◽  
Saveria Aquila ◽  
...  

The word autophagy broadly refers to the cellular catabolic processes that lead to the removal of damaged cytosolic proteins or cell organelles through lysosomes. Although autophagy is often observed during programmed cell death, it may also serve as a cell survival mechanism. Accumulation of reactive oxygen species within tissues and cells induces various defense mechanisms or programmed cell death. It has been shown that, besides inducing apoptosis, oxidative stress can also induce autophagy. To date, however, the regulation of autophagy in response to oxidative stress remains largely elusive and poorly understood. Therefore, the present study was designed to examine the ratio between oxidative stress and autophagy in macrophages after oxidant exposure (AAPH) and to investigate the ultrastructural localization of beclin-1, a protein essential for autophagy, under basal and stressful conditions. Our data provide evidence that oxidative stress induces autophagy in macrophages. We demonstrate, for the first time by immunoelectron microscopy, the subcellular localization of beclin-1 in autophagic cells.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Sang-Ging Ong ◽  
Won Hee Lee ◽  
Kazuki Kodo ◽  
Haodi Wu ◽  
Joseph C Wu

Diabetic cardiomyopathy is a common consequence of diabetes and associated with mitochondrial pathology. Using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as an in vitro model of diabetes, we sought to understand the role of mitophagy, a process that selectively degrades mitochondria through the autophagy-lysosome pathway as a crucial quality control pathway against diabetic cardiomyopathy. We first showed that iPSC-CMs exposed to a diabetic milieu demonstrated increased hypertrophy, impaired calcium signaling, and higher oxidative stress. Flow cytometry analysis of iPSC-CMs subjected to diabetic conditions revealed two distinct population of cells (normal and hypertrophied), suggesting a heterogeneous response to hyperglycemia. In these cells, hypertrophied iPSC-CMs were found to have reduced mitophagy compared to normal cells when exposed to hyperglycemia. In addition, we showed that mitochondrial fragmentation was also decreased in the hypertrophied iPSC-CMs compared to normal cells upon exposure to hyperglycemia, demonstrating a link between mitochondrial fragmentation and mitophagy. Surprisingly, pretreatment of iPSC-CMs with a non-selective antioxidant, N-(2-mercaptopropionyl)-glycine, not only failed to limit the deleterious effects of hyperglycemia, but actually led to increased hypertrophy and cell death. We found that mitophagy was significantly reduced in iPSC-CMs following antioxidant treatment, suggesting the need of mild oxidative stress as a trigger for mitophagy. Future studies are warranted to further investigate the association between oxidative stress, mitochondrial fragmentation, and mitochondrial fission as targets against diabetic cardiomyopathy.


2020 ◽  
Vol 10 (18) ◽  
pp. 6509
Author(s):  
Magdalena Kimsa-Dudek ◽  
Agata Krawczyk ◽  
Agnieszka Synowiec-Wojtarowicz

A redox imbalance disrupts the cellcycle and the proliferation process, and contributes to the initiation of programmed cell death. One of the pathways that are important for redox homeostasis is the Nrf2-ARE signaling pathway. Fluoride as well as static magnetic fields (SMF) are associated with the concepts of oxidative stress, and thus programmed cell death. Therefore, this study aimed to assess the connection between oxidative stress and apoptosis in human cells co-exposed to fluoride and a SMF with a different magnetic induction and to determine whether the Nrf2-signaling pathway is involved in these effects. The research was realized using normal human dermal fibroblasts that had been co-exposed to fluoride (0.3 mmol/L) and a SMF with a different magnetic induction (0.45 T, 0.55 T, 0.65 T) for 12 h. The mRNA levels of the cellular antioxidant system-related genes and apoptosis-related genes were assessed using the quantitative reverse transcription polymerase chain reaction (RT-qPCR) method. Our results indicated that the increased activity of antioxidant enzymes (SOD1 (superoxide dismutase 1), SOD2 and GSR (glutathione reductase)) suggests the restoration of the cell redox homeostasis that had been disturbed by fluoride, and also that the genes whose expression is associated with the induction of apoptosis are down regulated as a result of exposure to a SMF. The SMF with a 0.65 T flux density had the strongest effect on the fibroblasts. Moreover, our findings demonstrated that the Nrf2 transcription factor plays a crucial role in the protective effect of a SMF against fluoride toxicity in human cells. The results of these studies can form the basis for developing therapeutic strategies for apoptosis and oxidative stress-related diseases.


Sign in / Sign up

Export Citation Format

Share Document