Abstract 246: Human Induced Pluripotent Stem Cells Reveal Mitophagy as an Essential Process Against Diabetic Cardiomyopathy

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Sang-Ging Ong ◽  
Won Hee Lee ◽  
Kazuki Kodo ◽  
Haodi Wu ◽  
Joseph C Wu

Diabetic cardiomyopathy is a common consequence of diabetes and associated with mitochondrial pathology. Using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as an in vitro model of diabetes, we sought to understand the role of mitophagy, a process that selectively degrades mitochondria through the autophagy-lysosome pathway as a crucial quality control pathway against diabetic cardiomyopathy. We first showed that iPSC-CMs exposed to a diabetic milieu demonstrated increased hypertrophy, impaired calcium signaling, and higher oxidative stress. Flow cytometry analysis of iPSC-CMs subjected to diabetic conditions revealed two distinct population of cells (normal and hypertrophied), suggesting a heterogeneous response to hyperglycemia. In these cells, hypertrophied iPSC-CMs were found to have reduced mitophagy compared to normal cells when exposed to hyperglycemia. In addition, we showed that mitochondrial fragmentation was also decreased in the hypertrophied iPSC-CMs compared to normal cells upon exposure to hyperglycemia, demonstrating a link between mitochondrial fragmentation and mitophagy. Surprisingly, pretreatment of iPSC-CMs with a non-selective antioxidant, N-(2-mercaptopropionyl)-glycine, not only failed to limit the deleterious effects of hyperglycemia, but actually led to increased hypertrophy and cell death. We found that mitophagy was significantly reduced in iPSC-CMs following antioxidant treatment, suggesting the need of mild oxidative stress as a trigger for mitophagy. Future studies are warranted to further investigate the association between oxidative stress, mitochondrial fragmentation, and mitochondrial fission as targets against diabetic cardiomyopathy.

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1733 ◽  
Author(s):  
Michele Filippo Buono ◽  
Lisa von Boehmer ◽  
Jaan Strang ◽  
Simon P. Hoerstrup ◽  
Maximilian Y. Emmert ◽  
...  

Genetic cardiomyopathies are characterized by changes in the function and structure of the myocardium. The development of a novel in vitro model could help to better emulate healthy and diseased human heart conditions and may improve the understanding of disease mechanisms. In this study, for the first time, we demonstrated the generation of cardiac organoids using a triculture approach of human induced pluripotent stem-cell-derived cardiomyocytes (hiPS-CMs)—from healthy subjects and cardiomyopathy patients—human cardiac microvascular endothelial cells (HCMECs) and human cardiac fibroblasts (HCFs). We assessed the organoids’ suitability as a 3D cellular model for the representation of phenotypical features of healthy and cardiomyopathic hearts. We observed clear differences in structure and beating behavior between the organoid groups, depending on the type of hiPS-CMs (healthy versus cardiomyopathic) used. Organoids may thus prove a promising tool for the design and testing of patient-specific treatments as well as provide a platform for safer and more efficacious drug development.


2016 ◽  
Vol 113 (47) ◽  
pp. E7564-E7571 ◽  
Author(s):  
Carmen R. Sunico ◽  
Abdullah Sultan ◽  
Tomohiro Nakamura ◽  
Nima Dolatabadi ◽  
James Parker ◽  
...  

Recent studies have pointed to protein S-nitrosylation as a critical regulator of cellular redox homeostasis. For example, S-nitrosylation of peroxiredoxin-2 (Prx2), a peroxidase widely expressed in mammalian neurons, inhibits both enzymatic activity and protective function against oxidative stress. Here, using in vitro and in vivo approaches, we identify a role and reaction mechanism of the reductase sulfiredoxin (Srxn1) as an enzyme that denitrosylates (thus removing -SNO) from Prx2 in an ATP-dependent manner. Accordingly, by decreasing S-nitrosylated Prx2 (SNO-Prx2), overexpression of Srxn1 protects dopaminergic neural cells and human-induced pluripotent stem cell (hiPSC)-derived neurons from NO-induced hypersensitivity to oxidative stress. The pathophysiological relevance of this observation is suggested by our finding that SNO-Prx2 is dramatically increased in murine and human Parkinson’s disease (PD) brains. Our findings therefore suggest that Srxn1 may represent a therapeutic target for neurodegenerative disorders such as PD that involve nitrosative/oxidative stress.


2020 ◽  
Vol 7 (3) ◽  
pp. 135
Author(s):  
Hiraganahalli Bhaskar Deepak ◽  
Nellikalaya Shreekrishna ◽  
Zaheerbasha Sameermahmood ◽  
Niranjan Naranapur Anand ◽  
Raghotham Hulgi ◽  
...  

JCI Insight ◽  
2021 ◽  
Author(s):  
Justin Davis ◽  
Ahmad Chouman ◽  
Jeffery Creech ◽  
Andre Monteiro da Rocha ◽  
Daniela Ponce-Balbuena ◽  
...  

2020 ◽  
Vol 21 (4) ◽  
pp. 1438 ◽  
Author(s):  
John P. Gleeson ◽  
Hannah Q. Estrada ◽  
Michifumi Yamashita ◽  
Clive N. Svendsen ◽  
Stephan R. Targan ◽  
...  

In inflammatory bowel disease (IBD), the intestinal epithelium is characterized by increased permeability both in active disease and remission states. The genetic underpinnings of this increased intestinal permeability are largely unstudied, in part due to a lack of appropriate modelling systems. Our aim is to develop an in vitro model of intestinal permeability using induced pluripotent stem cell (iPSC)-derived human intestinal organoids (HIOs) and human colonic organoids (HCOs) to study barrier dysfunction. iPSCs were generated from healthy controls, adult onset IBD, and very early onset IBD (VEO-IBD) patients and differentiated into HIOs and HCOs. EpCAM+ selected cells were seeded onto Transwell inserts and barrier integrity studies were carried out in the presence or absence of pro-inflammatory cytokines TNFα and IFNγ. Quantitative real-time PCR (qRT-PCR), transmission electron microscopy (TEM), and immunofluorescence were used to determine altered tight and adherens junction protein expression or localization. Differentiation to HCO indicated an increased gene expression of CDX2, CD147, and CA2, and increased basal transepithelial electrical resistance compared to HIO. Permeability studies were carried out in HIO- and HCO-derived epithelium, and permeability of FD4 was significantly increased when exposed to TNFα and IFNγ. TEM and immunofluorescence imaging indicated a mislocalization of E-cadherin and ZO-1 in TNFα and IFNγ challenged organoids with a corresponding decrease in mRNA expression. Comparisons between HIO- and HCO-epithelium show a difference in gene expression, electrophysiology, and morphology: both are responsive to TNFα and IFNγ stimulation resulting in enhanced permeability, and changes in tight and adherens junction architecture. This data indicate that iPSC-derived HIOs and HCOs constitute an appropriate physiologically responsive model to study barrier dysfunction and the role of the epithelium in IBD and VEO-IBD.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Parvin Forghani ◽  
Aysha Rashid ◽  
Dong Li ◽  
Anant Mandawat ◽  
Chunhui XU

Cardiovascular toxicity post Carfilzomib (Cfz/Kyprolis) therapy has been identified in several clinical settings. A prevalent challenge in side effects of anti-cancer drugs is the translation of findings from preclinical research into clinical practice. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are being used as a physiological in vitro model to overcome some of these challenges. Here we used both 2D and 3D hiPSC-CMs to elucidate the underlying mechanism of post-Cfz cardiotoxicity. hiPSC-CMs were exposed to clinically relevant doses of Cfz based on C max for Cfz (5.88 μM). Data normalization against the control group demonstrates significant reduction in cell viability following two days of treatment with Cfz in 3 different cell lines (IMR-90, SCVI273 and 902). Increased Caspase3/7 activity post Cfz treatment paralleled with a substantial decrease in mitochondrial membrane potential and increase in oxidative stress following Cfz treatment. Also, significant decrease in oxygen consumption rate was observed after one-day exposure. In addition, we observed impaired Ca 2+ handling at the single cell level following Cfz treatment. Using video microscopy with motion vector analysis we also observed significant decrease in contractility of 3D hiPSC-CMs following Cfz treatment. Additionally, we observed disrupted expression of α-actinin, alterations in structural organization of sarcomeres, circularity and aspect ratio. Altogether, these results suggest that Cfz induced cardiotoxicity as indicated by cell viability, oxidative stress, mitochondrial and structural damages along with abnormal Ca 2+ handing and contractility dysfunction.


Sign in / Sign up

Export Citation Format

Share Document