scholarly journals A novel tribasic Golgi export signal directs cargo protein interaction with activated Rab11 and AP-1–dependent Golgi–plasma membrane trafficking

2016 ◽  
Vol 27 (8) ◽  
pp. 1320-1331 ◽  
Author(s):  
Hirendrasinh B. Parmar ◽  
Roy Duncan

The reovirus fusion–associated small transmembrane (FAST) proteins comprise a unique family of viral membrane fusion proteins dedicated to inducing cell–cell fusion. We recently reported that a polybasic motif (PBM) in the cytosolic tail of reptilian reovirus p14 FAST protein functions as a novel tribasic Golgi export signal. Using coimmunoprecipitation and fluorescence resonance energy transfer (FRET) assays, we now show the PBM directs interaction of p14 with GTP-Rab11. Overexpression of dominant-negative Rab11 and RNA interference knockdown of endogenous Rab11 inhibited p14 plasma membrane trafficking and resulted in p14 accumulation in the Golgi complex. This is the first example of Golgi export to the plasma membrane that is dependent on the interaction of membrane protein cargo with activated Rab11. RNA interference and immunofluorescence microscopy further revealed that p14 Golgi export is dependent on AP-1 (but not AP-3 or AP-4) and that Rab11 and AP-1 both colocalize with p14 at the TGN. Together these results imply the PBM mediates interactions of p14 with activated Rab11 at the TGN, resulting in p14 sorting into AP1-coated vesicles for anterograde TGN–plasma membrane transport.

2021 ◽  
Vol 22 (21) ◽  
pp. 11727
Author(s):  
Maria J. Sarmento ◽  
Luís Borges-Araújo ◽  
Sandra N. Pinto ◽  
Nuno Bernardes ◽  
Joana C. Ricardo ◽  
...  

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential plasma membrane component involved in several cellular functions, including membrane trafficking and cytoskeleton organization. This function multiplicity is partially achieved through a dynamic spatiotemporal organization of PI(4,5)P2 within the membrane. Here, we use a Förster resonance energy transfer (FRET) approach to quantitatively assess the extent of PI(4,5)P2 confinement within the plasma membrane. This methodology relies on the rigorous evaluation of the dependence of absolute FRET efficiencies between pleckstrin homology domains (PHPLCδ) fused with fluorescent proteins and their average fluorescence intensity at the membrane. PI(4,5)P2 is found to be significantly compartmentalized at the plasma membrane of HeLa cells, and these clusters are not cholesterol-dependent, suggesting that membrane rafts are not involved in the formation of these nanodomains. On the other hand, upon inhibition of actin polymerization, compartmentalization of PI(4,5)P2 is almost entirely eliminated, showing that the cytoskeleton network is the critical component responsible for the formation of nanoscale PI(4,5)P2 domains in HeLa cells.


1997 ◽  
Vol 30 (1) ◽  
pp. 67-106 ◽  
Author(s):  
S. DAMJANOVICH ◽  
R. GÁSPÁR, Jr. ◽  
C. PIERI

1. INTRODUCTION 681.1 Receptor patterns in the plasma membrane 681.2 Different types of receptor patterns 712. METHODS TO INVESTIGATE NON-RANDOM RECEPTOR CLUSTERING 732.1 Fluorescence resonance energy transfer 732.2 Flow cytometric energy transfer measurement 782.3 Fluorescence anisotropy and energy transfer 792.4 Photobleaching energy transfer on single cells 812.5 Two-dimensional mapping of receptor superstructures 822.6 Detecting single receptor molecules 852.7 Chemical identification of receptor clusters 862.8 Electron microscopy 872.9 Scanning force microscopy 883. CONFORMATIONAL STATES OF RECEPTORS 903.1 Multi-subunit receptor structures 903.2 Physical parameters influencing conformational states 913.3 Chemical interactions and receptor conformations 924. ON THE ORIGIN OF NATURALLY OCCURRING RECEPTOR CLUSTERS 934.1 Synthesis of receptors and their localization in the plasma membrane 934.2 Lipid domain structure of the plasma membrane 944.3 The validity of the Singer–Nicolson model 945. CONCLUSIONS 966. ACKNOWLEDGEMENTS 967. REFERENCES 97


2008 ◽  
Vol 19 (10) ◽  
pp. 4366-4373 ◽  
Author(s):  
Xinxin Gao ◽  
Jin Zhang

As a central kinase in the phosphatidylinositol 3-kinase pathway, Akt has been the subject of extensive research; yet, spatiotemporal regulation of Akt in different membrane microdomains remains largely unknown. To examine dynamic Akt activity in membrane microdomains in living cells, we developed a specific and sensitive fluorescence resonance energy transfer-based Akt activity reporter, AktAR, through systematic testing of different substrates and fluorescent proteins. Targeted AktAR reported higher Akt activity with faster activation kinetics within lipid rafts compared with nonraft regions of plasma membrane. Disruption of rafts attenuated platelet-derived growth factor (PDGF)-stimulated Akt activity in rafts without affecting that in nonraft regions. However, in insulin-like growth factor-1 (IGF)-1 stimulation, Akt signaling in nonraft regions is dependent on that in raft regions. As a result, cholesterol depletion diminishes Akt activity in both regions. Thus, Akt activities are differentially regulated in different membrane microdomains, and the overall activity of this oncogenic pathway is dependent on raft function. Given the increased abundance of lipid rafts in some cancer cells, the distinct Akt-activating characteristics of PDGF and IGF-1, in terms of both effectiveness and raft dependence, demonstrate the capabilities of different growth factor signaling pathways to transduce differential oncogenic signals across plasma membrane.


2018 ◽  
Vol 150 (8) ◽  
pp. 1163-1177 ◽  
Author(s):  
Colline Sanchez ◽  
Christine Berthier ◽  
Bruno Allard ◽  
Jimmy Perrot ◽  
Clément Bouvard ◽  
...  

Ion channel activity in the plasma membrane of living cells generates voltage changes that are critical for numerous biological functions. The membrane of the endoplasmic/sarcoplasmic reticulum (ER/SR) is also endowed with ion channels, but whether changes in its voltage occur during cellular activity has remained ambiguous. This issue is critical for cell functions that depend on a Ca2+ flux across the reticulum membrane. This is the case for contraction of striated muscle, which is triggered by opening of ryanodine receptor Ca2+ release channels in the SR membrane in response to depolarization of the transverse invaginations of the plasma membrane (the t-tubules). Here, we use targeted expression of voltage-sensitive fluorescence resonance energy transfer (FRET) probes of the Mermaid family in differentiated muscle fibers to determine whether changes in SR membrane voltage occur during depolarization–contraction coupling. In the absence of an SR targeting sequence, FRET signals from probes present in the t-tubule membrane allow calibration of the voltage sensitivity and amplitude of the response to voltage-clamp pulses. Successful SR targeting of the probes was achieved using an N-terminal domain of triadin, which completely eliminates voltage-clamp–activated FRET signals from the t-tubule membrane of transfected fibers. In fibers expressing SR-targeted Mermaid probes, activation of SR Ca2+ release in the presence of intracellular ethyleneglycol-bis(β-amino-ethyl ether)-N,N,N′,N′-tetra acetic acid (EGTA) results in an accompanying FRET signal. We find that this signal results from pH sensitivity of the probe, which detects cytosolic acidification because of the release of protons upon Ca2+ binding to EGTA. When EGTA is substituted with either 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid or the contraction blocker N-benzyl-p-toluene sulfonamide, we find no indication of a substantial change in the FRET response caused by a voltage change. These results suggest that the ryanodine receptor–mediated SR Ca2+ efflux is well balanced by concomitant counterion currents across the SR membrane.


2019 ◽  
Vol 17 (3) ◽  
pp. 203-217 ◽  
Author(s):  
Dibyendu K. Sasmal ◽  
Wei Feng ◽  
Sobhan Roy ◽  
Peter Leung ◽  
Yanran He ◽  
...  

Abstract A major unanswered question is how a TCR discriminates between foreign and self-peptides presented on the APC surface. Here, we used in situ fluorescence resonance energy transfer (FRET) to measure the distances of single TCR–pMHC bonds and the conformations of individual TCR–CD3ζ receptors at the membranes of live primary T cells. We found that a TCR discriminates between closely related peptides by forming single TCR–pMHC bonds with different conformations, and the most potent pMHC forms the shortest bond. The bond conformation is an intrinsic property that is independent of the binding affinity and kinetics, TCR microcluster formation, and CD4 binding. The bond conformation dictates the degree of CD3ζ dissociation from the inner leaflet of the plasma membrane via a positive calcium signaling feedback loop to precisely control the accessibility of CD3ζ ITAMs for phosphorylation. Our data revealed the mechanism by which a TCR deciphers the structural differences among peptides via the TCR–pMHC bond conformation.


2010 ◽  
Vol 298 (4) ◽  
pp. F885-F891 ◽  
Author(s):  
Nancy J. Hong ◽  
Guillermo B. Silva ◽  
Jeffrey L. Garvin

We showed that luminal flow increases net superoxide (O2−) production via NADPH oxidase in thick ascending limbs. Protein kinase C (PKC) activates NADPH oxidase activity in phagocytes, cardiomyocytes, aortic endothelial cells, vascular smooth muscle cells, and renal mesangial cells. However, the flow-activated pathway that induces NADPH oxidase activity in thick ascending limbs is unclear. We hypothesized that PKC mediates flow-stimulated net O2− production by thick ascending limbs. Initiation of flow (20 nl/min) increased net O2− production from 4 ± 1 to 61 ± 12 AU/s ( P < 0.007; n = 5). The NADPH oxidase inhibitor apocynin completely blocked the flow-induced increase in net O2− production (2 ± 1 vs. 1 ± 1 AU/s; P > 0.05; n = 5). Flow-stimulated O2− was also blocked in p47phox-deficient mice. We measured flow-stimulated PKC activity with a fluorescence resonance energy transfer (FRET)-based membrane-targeted PKC activity reporter and found that the FRET ratio increased from 0.87 ± 0.02 to 0.96 ± 0.04 AU ( P < 0.05; n = 6). In the absence of flow, the PKC activator phorbol 12-myristate 13-acetate (200 nM) enhanced net O2− production from 5 ± 2 to 92 ± 6 AU/s ( P < 0.001; n = 6). The PKC-α- and βI-selective inhibitor Gö 6976 (100 nM) decreased flow-stimulated net O2− production from 54 ± 15 to 2 ± 1 AU/s ( P < 0.04; n = 5). Flow-induced net O2− production was inhibited in thick ascending limbs transduced with dominant-negative (dn)PKC-α but not dnPKCβI or LacZ (Δ = 11 ± 3 AU/s for dnPKCα, 55 ± 7 AU/s for dnPKCβI, and 63 ± 7 AU/s for LacZ; P < 0.001; n = 6). We concluded that flow stimulates net O2− production in thick ascending limbs via PKC-α-mediated activation of NADPH oxidase.


2010 ◽  
Vol 191 (3) ◽  
pp. 553-570 ◽  
Author(s):  
Pirjo M. Apaja ◽  
Haijin Xu ◽  
Gergely L. Lukacs

Cellular protein homeostasis profoundly depends on the disposal of terminally damaged polypeptides. To demonstrate the operation and elucidate the molecular basis of quality control of conformationally impaired plasma membrane (PM) proteins, we constructed CD4 chimeras containing the wild type or a temperature-sensitive bacteriophage λ domain in their cytoplasmic region. Using proteomic, biochemical, and genetic approaches, we showed that thermal unfolding of the λ domain at the PM provoked the recruitment of Hsp40/Hsc70/Hsp90 chaperones and the E2–E3 complex. Mixed-chain polyubiquitination, monitored by bioluminescence resonance energy transfer and immunoblotting, is responsible for the nonnative chimera–accelerated internalization, impaired recycling, and endosomal sorting complex required for transport–dependent lysosomal degradation. A similar paradigm prevails for mutant dopamine D4.4 and vasopressin V2 receptor removal from the PM. These results outline a peripheral proteostatic mechanism in higher eukaryotes and its potential contribution to the pathogenesis of a subset of conformational diseases.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Stijn van Dorp ◽  
Ruoyi Qiu ◽  
Ucheor B Choi ◽  
Minnie M Wu ◽  
Michelle Yen ◽  
...  

The dimeric ER Ca2+ sensor STIM1 controls store-operated Ca2+ entry (SOCE) through the regulated binding of its CRAC activation domain (CAD) to Orai channels in the plasma membrane. In resting cells, the STIM1 CC1 domain interacts with CAD to suppress SOCE, but the structural basis of this interaction is unclear. Using single-molecule Förster resonance energy transfer (smFRET) and protein crosslinking approaches, we show that CC1 interacts dynamically with CAD in a domain-swapped configuration with an orientation predicted to sequester its Orai-binding region adjacent to the ER membrane. Following ER Ca2+ depletion and release from CAD, cysteine crosslinking indicates that the two CC1 domains become closely paired along their entire length in the active Orai-bound state. These findings provide a structural basis for the dual roles of CC1: sequestering CAD to suppress SOCE in resting cells and propelling it towards the plasma membrane to activate Orai and SOCE after store depletion.


Sign in / Sign up

Export Citation Format

Share Document