scholarly journals The GTPase SPAG-1 orchestrates meiotic program by dictating meiotic resumption and cytoskeleton architecture in mouse oocytes

2016 ◽  
Vol 27 (11) ◽  
pp. 1776-1785 ◽  
Author(s):  
Chunjie Huang ◽  
Di Wu ◽  
Faheem Ahmed Khan ◽  
Xiaofei Jiao ◽  
Kaifeng Guan ◽  
...  

In mammals, a finite population of oocytes is generated during embryogenesis, and proper oocyte meiotic divisions are crucial for fertility. Sperm-associated antigen 1 (SPAG-1) has been implicated in infertility and tumorigenesis; however, its relevance in cell cycle programs remains rudimentary. Here we explore a novel role of SPAG-1 during oocyte meiotic progression. SPAG-1 associated with meiotic spindles and its depletion severely compromised M-phase entry (germinal vesicle breakdown [GVBD]) and polar body extrusion. The GVBD defect observed was due to an increase in intraoocyte cAMP abundance and decrease in ATP production, as confirmed by the activation of AMP-dependent kinase (AMPK). SPAG-1 RNA interference (RNAi)–elicited defective spindle morphogenesis was evidenced by the dysfunction of γ-tubulin, which resulted from substantially reduced phosphorylation of MAPK and irregularly dispersed distribution of phospho-MAPK around spindles instead of concentration at spindle poles. Significantly, actin expression abruptly decreased and formation of cortical granule–free domains, actin caps, and contractile ring disrupted by SPAG-1 RNAi. In addition, the spindle assembly checkpoint remained functional upon SPAG-1 depletion. The findings broaden our knowledge of SPAG-1, showing that it exerts a role in oocyte meiotic execution via its involvement in AMPK and MAPK signaling pathways.

2019 ◽  
Author(s):  
Di Xie ◽  
Juan Zhang ◽  
JinLi Ding ◽  
Jing Yang ◽  
Yan Zhang

Background. OLA1 is a member of the GTPase protein family, unlike other members, it can bind and hydrolyze ATP more efficiently than GTP. OLA1 participates in cell proliferation, oxidative response and tumorigenesis. However, whether OLA1 is also required for oocyte meiosis is still unknown. Methods. In this study, the localization, expression, and functions of OLA1 in the mouse oocyte meiosis were examined. Immunofluorescent and confocal microscopy were used to explore the location pattern of OLA1 in the mouse oocyte. Moreover, nocodazole treatment was used to confirm the spindle-like location of OLA1 during mouse meiosis. Western blot was used to explore the expression pattern of OLA1 in the mouse oocyte. Microinjection of siRNA was used to explore the OLA1 functions in the mouse oocyte meiosis. In addition, chromosome spreading was used to investigate the spindle assembly checkpoint (SAC) activity. Results. Immunofluorescent staining showed that OLA1 evenly distributed in the cytoplasm at germinal vesicle (GV) stage. After meiosis resumption (GVBD), OLA1 co-localized with spindles, which was further identified by nocodazole treatment experiments. Knockdown of OLA1 impaired the germinal vesicle breakdown progression and finally resulted in a lower polar body extrusion rate. Immunofluorescence analysis indicated that knockdown of OLA1 led to abnormal spindle assembly, which was evidenced by multipolar spindles in OLA1-RNAi-oocytes. After 6 h post-GVBD in culture, an increased proportion of oocyte which has precociously entered into anaphase/telephase I (A/TI) was observed in OLA1-knockdown oocytes, suggesting that loss of OLA1 resulted in the premature segregation of homologous chromosomes. In addition, the chromosome spread analysis suggested that OLA1 knockdown induced premature anaphase onset was due to the precocious inactivation of SAC. Taken together, we concluded that OLA1 plays important role in GVBD, spindle assembly and SAC activation maintenance in oocyte meiosis.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8180 ◽  
Author(s):  
Di Xie ◽  
Juan Zhang ◽  
JinLi Ding ◽  
Jing Yang ◽  
Yan Zhang

Background OLA1 is a member of the GTPase protein family; unlike other members, it possess both GTPase and ATPase activities, and can bind and hydrolyze ATP more efficiently than GTP. OLA1 participates in cell proliferation, oxidative response, protein synthesis and tumorigenesis. However, whether OLA1 is also required for oocyte meiosis is still unknown. Methods In this study, the localization, expression, and functions of OLA1 in the mouse oocyte meiosis were examined. Immunofluorescent and confocal microscopy were used to explore the location pattern of OLA1 in the mouse oocyte. Moreover, nocodazole treatment was used to confirm the spindle-like location of OLA1 during mouse meiosis. Western blot was used to explore the expression pattern of OLA1 in the mouse oocyte. Microinjection of siRNA was used to explore the OLA1 functions in the mouse oocyte meiosis. In addition, chromosome spreading was used to investigate the spindle assembly checkpoint (SAC) activity. Results Immunofluorescent staining showed that OLA1 evenly distributed in the cytoplasm at germinal vesicle (GV) stage. After meiosis resumption (GVBD), OLA1 co-localized with spindles, which was further identified by nocodazole treatment experiments. Knockdown of OLA1 impaired the germinal vesicle breakdown progression and finally resulted in a lower polar body extrusion rate. Immunofluorescence analysis indicated that knockdown of OLA1 led to abnormal spindle assembly, which was evidenced by multipolar spindles in OLA1-RNAi-oocytes. After 6 h post-GVBD in culture, an increased proportion of oocyte which has precociously entered into anaphase/telephase I (A/TI) was observed in OLA1-knockdown oocytes, suggesting that loss of OLA1 resulted in the premature segregation of homologous chromosomes. In addition, the chromosome spread analysis suggested that OLA1 knockdown induced premature anaphase onset was due to the precocious inactivation of SAC. Taken together, we concluded that OLA1 plays important role in GVBD, spindle assembly and SAC activation maintenance in oocyte meiosis.


2019 ◽  
Author(s):  
Di Xie ◽  
Juan Zhang ◽  
JinLi Ding ◽  
Jing Yang ◽  
Yan Zhang

Background. OLA1 is a member of the GTPase protein family, unlike other members, it can bind and hydrolyze ATP more efficiently than GTP. OLA1 participates in cell proliferation, oxidative response and tumorigenesis. However, whether OLA1 is also required for oocyte meiosis is still unknown. Methods. In this study, the localization, expression, and functions of OLA1 in the mouse oocyte meiosis were examined. Immunofluorescent and confocal microscopy were used to explore the location pattern of OLA1 in the mouse oocyte. Moreover, nocodazole treatment was used to confirm the spindle-like location of OLA1 during mouse meiosis. Western blot was used to explore the expression pattern of OLA1 in the mouse oocyte. Microinjection of siRNA was used to explore the OLA1 functions in the mouse oocyte meiosis. In addition, chromosome spreading was used to investigate the spindle assembly checkpoint (SAC) activity. Results. Immunofluorescent staining showed that OLA1 evenly distributed in the cytoplasm at germinal vesicle (GV) stage. After meiosis resumption (GVBD), OLA1 co-localized with spindles, which was further identified by nocodazole treatment experiments. Knockdown of OLA1 impaired the germinal vesicle breakdown progression and finally resulted in a lower polar body extrusion rate. Immunofluorescence analysis indicated that knockdown of OLA1 led to abnormal spindle assembly, which was evidenced by multipolar spindles in OLA1-RNAi-oocytes. After 6 h post-GVBD in culture, an increased proportion of oocyte which has precociously entered into anaphase/telephase I (A/TI) was observed in OLA1-knockdown oocytes, suggesting that loss of OLA1 resulted in the premature segregation of homologous chromosomes. In addition, the chromosome spread analysis suggested that OLA1 knockdown induced premature anaphase onset was due to the precocious inactivation of SAC. Taken together, we concluded that OLA1 plays important role in GVBD, spindle assembly and SAC activation maintenance in oocyte meiosis.


Zygote ◽  
1995 ◽  
Vol 3 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Joise M.L. McConnell ◽  
Liz Campbell ◽  
Caroline Vincent

SummaryThe ability of mouse oocytes to become activated after exposure too the calcium ionophore A23187 has been investigated at different stages of meiotic maturation. The potential to respond to ionophore has been studied in relation to the time since resumption of meiotic maturation, the chromosomal conformation of the DNA within each cell and the protein synthetic profile of the maturing oocyte. Our studies demonstrate that when maturing oocytes from an MF1 strain of mice were treated with A23187 activation occured only in oocytes which had reached second meiotic metaphase (MII). However, development of the ability to respond to ionophore was not dependent on an orderly progression through normal chromosomal rearrangements such as separation at metaphase I (MI) and subsequent polar body extrusion, since there process could be prevented and the capacity to be activated became apparent in such oocytes at a time when control cells had reached MII. These data suggest that the ability to respond to ionophore depends on the development of a cytoplasmic or complex capable of monitoring the time since initiation of germinal vesicle breakdown. Metabolic radiolabelling of oocytes which were able to respond to calcium ionophore, even though they had been prevented from undergoing normal chromosomal rearrangements, showed them to be synthesising a group of proteins known as the 35 kDa complex.


2013 ◽  
Vol 19 (1) ◽  
pp. 190-200 ◽  
Author(s):  
Shang-Wu Yang ◽  
Hao Huang ◽  
Chen Gao ◽  
Lei Chen ◽  
Shu-Tao Qi ◽  
...  

AbstractIt is well known that extracellular signal-regulated kinase 8 (ERK8) plays pivotal roles in various mitotic events. But its physiological roles in oocyte meiotic maturation remain unclear. In this study, we found that although no specific ERK8 signal was detected in oocyte at the germinal vesicle stage, ERK8 began to migrate to the periphery of chromosomes shortly after germinal vesicle breakdown. At prometaphase I, metaphase I (MI), anaphase I, telophase I, and metaphase II (MII) stages, ERK8 was stably detected at the spindles. By taxol treatment, we clarified that the ERK8 signal was stained on the spindle fibers as well as microtubule asters in MI and MII oocytes. In fertilized eggs, the ERK8 signal was not observed in the two pronuclei stages. At prometaphase, metaphase, and anaphase of the first mitosis, ERK8 was detected on the mitotic spindle. ERK8 knock down by antibody microinjection and specific siRNA caused abnormal spindles, failed chromosome congression, and decreased first polar body extrusion. Taken together, our results suggest that ERK8 plays an important role in spindle organization during mouse oocyte meiotic maturation and early embryo cleavage.


1992 ◽  
Vol 117 (4) ◽  
pp. 799-811 ◽  
Author(s):  
RM Tombes ◽  
C Simerly ◽  
GG Borisy ◽  
G Schatten

During early development, intracellular Ca2+ mobilization is not only essential for fertilization, but has also been implicated during other meiotic and mitotic events, such as germinal vesicle breakdown (GVBD) and nuclear envelope breakdown (NEBD). In this study, the roles of intracellular and extracellular Ca2+ were examined during meiotic maturation and reinitiation at parthenogenetic activation and during first mitosis in a single species using the same methodologies. Cumulus-free metaphase II mouse oocytes immediately resumed anaphase upon the induction of a large, transient Ca2+ elevation. This resumption of meiosis and associated events, such as cortical granule discharge, were not sensitive to extracellular Ca2+ removal, but were blocked by intracellular Ca2+ chelators. In contrast, meiosis I was dependent on external Ca2+; in its absence, the formation and function of the first meiotic spindle was delayed, the first polar body did not form and an interphase-like state was induced. GVBD was not dependent on external Ca2+ and showed no associated Ca2+ changes. NEBD at first mitosis in fertilized eggs, on the other hand, was frequently, but not always associated with a brief Ca2+ transient and was dependent on Ca2+ mobilization. We conclude that GVBD is Ca2+ independent, but that the dependence of NEBD on Ca2+ suggests regulation by more than one pathway. As cells develop from Ca(2+)-independent germinal vesicle oocytes to internal Ca(2+)-dependent pronuclear eggs, internal Ca2+ pools increase by approximately fourfold.


1999 ◽  
Vol 146 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Stéphane Brunet ◽  
Angélica Santa Maria ◽  
Philippe Guillaud ◽  
Denis Dujardin ◽  
Jacek Z. Kubiak ◽  
...  

During meiosis, two successive divisions occur without any intermediate S phase to produce haploid gametes. The first meiotic division is unique in that homologous chromosomes are segregated while the cohesion between sister chromatids is maintained, resulting in a reductional division. Moreover, the duration of the first meiotic M phase is usually prolonged when compared with mitotic M phases lasting 8 h in mouse oocytes. We investigated the spindle assembly pathway and its role in the progression of the first meiotic M phase in mouse oocytes. During the first 4 h, a bipolar spindle forms and the chromosomes congress near the equatorial plane of the spindle without stable kinetochore– microtubule end interactions. This late prometaphase spindle is then maintained for 4 h with chromosomes oscillating in the central region of the spindle. The kinetochore–microtubule end interactions are set up at the end of the first meiotic M phase (8 h after entry into M phase). This event allows the final alignment of the chromosomes and exit from metaphase. The continuous presence of the prometaphase spindle is not required for progression of the first meiotic M phase. Finally, the ability of kinetochores to interact with microtubules is acquired at the end of the first meiotic M phase and determines the timing of polar body extrusion.


1992 ◽  
Vol 102 (3) ◽  
pp. 457-467 ◽  
Author(s):  
J.Z. Kubiak ◽  
M. Weber ◽  
G. Geraud ◽  
B. Maro

When metaphase II-arrested mouse oocytes (M II) are activated very soon after ovulation, they respond abortively by second polar body extrusion followed by another metaphase arrest (metaphase III, M III; Kubiak, 1989). The M II/M III transition resembles the natural transition between the first and second meiotic metaphases (M I/M II). We observed that a similar sequence of events takes place during these two transitions: after anaphase, a polar body is extruded, the microtubules of the midbody disappear rapidly and a new metaphase spindle forms. The MPM-2 monoclonal antibody (which reacts with phosphorylated proteins associated with the centrosome during M-phase) stains discrete foci of peri-centriolar material only in metaphase arrested oocytes; during both transitional periods, a diffuse staining is observed, suggesting that these centrosomal proteins are dephosphorylated, as in a normal interphase. However, the chromosomes always remain condensed and an interphase network of microtubules is never observed during the transitional periods. Incorporation of 32P into proteins increases specifically during the transitional periods. Pulse-chase experiments, after labeling of the oocytes in M phase with 32P, showed that a 62 kDa phosphoprotein band disappears at the time of polar body extrusion. Histone H1 kinase activity (which reflects the activity of the maturation promoting factor) drops during both transitional periods to the level characteristic of interphase and then increases when the new spindle forms. Both the M I/M II and M II/M III transitions require protein synthesis as demonstrated by the effect of puromycin. These results suggest that the two M-phase/M-phase transitions are probably driven by the same molecular mechanism.


Development ◽  
1991 ◽  
Vol 112 (4) ◽  
pp. 971-980 ◽  
Author(s):  
H. Alexandre ◽  
A. Van Cauwenberge ◽  
Y. Tsukitani ◽  
J. Mulnard

Okadaic acid (OA), a potent inhibitor of types 1 and 2A protein phosphatases, was shown recently to induce chromatin condensation and germinal vesicle breakdown (GVBD) in mouse oocytes arrested at the dictyate stage by dibutyryl cAMP (dbcAMP), isobutyl methylxanthine (IBMX) and 12,13-phorbol dibutyrate (PDBu). We confirm these results using IBMX and another phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA) and show that OA also bypasses the inhibitory effect of 6-dimethylaminopurine (6-DMAP). It has been concluded that protein phosphatases 1 and/or 2A (PP1, 2A), involved in the negative control of MPF activation, are thus operating downstream from both the protein kinase A and protein kinase C catalysed phosphorylation steps that prevent the breakdown of GV. Similar enzymatic activities are also able to counteract the general inhibition of protein phosphorylation. However, PP1 and/or PP2A are positively involved in the activation of pericentriolar material (PCM) into microtubule organizing centres (MTOCs). This explains the inhibitory effect of OA on spindle assembly. Finally, OA interferes with the integrity and/or function of actomyosin filaments. This results in a dramatic ruffling of the plasma membrane leading to the internalization of large vacuoles, the inhibition of chromosome centrifugal displacement and, consequently, the prevention of polar body extrusion.


Zygote ◽  
2008 ◽  
Vol 16 (2) ◽  
pp. 135-144
Author(s):  
G. Sánchez Toranzo ◽  
L. Zelarayán ◽  
F. Bonilla ◽  
J. Oterino ◽  
M.I. Bühler

SummaryAmphibian oocytes meiotic arrest is released under the stimulus of progesterone; this hormone interacts with the oocyte surface and starts a cascade of events leading to the activation of a cytoplasmic maturation promoting factor (MPF) that induces germinal vesicle breakdown (GVBD), chromosome condensation and extrusion of the first polar body.The aim of this work was to determine whether the activation of a GABAA receptor is able to induce GVBD in fully grown denuded oocytes of Bufo arenarum and to analyse its possible participation in progesterone-induced maturation. We also evaluated the role of purines and phospholipids in the maturation process induced by a GABAA receptor agonist such as muscimol.Our results indicated that the activation of the GABAA receptor by muscimol induces maturation in a dose- and time-dependent manner and that this activation is a genuine maturation that enables oocytes to form pronuclei. Assays with a receptor antagonist, picrotoxine, showed that the maturation induced by muscimol was inhibited. Treatment with picrotoxine, however, shows that the participation of GABAA receptor in progesterone-induced maturation is not significant.In addition, our results indicate that high intracellular levels of purines obtained by the use of db-AMPc and theophylline or the inhibition of the phosphatidylinositol 4,5-bisphosphate (PIP2 hydrolysis by neomycin and PIP2 turn over by LiCl, respectively, inhibited the maturation induced by muscimol. Treatment with H-7 indicated, however, that PKC activation is not necessary for GVBD induced by the GABAA receptor agonist. Results suggest that the transduction pathway used by the GABAA receptor to induce maturation is different from those used by progesterone.


Sign in / Sign up

Export Citation Format

Share Document