scholarly journals Phosphorylation of SNAP-23 at Ser95 causes a structural alteration and negatively regulates Fc receptor–mediated phagosome formation and maturation in macrophages

2018 ◽  
Vol 29 (14) ◽  
pp. 1753-1762 ◽  
Author(s):  
Chiye Sakurai ◽  
Makoto Itakura ◽  
Daiki Kinoshita ◽  
Seisuke Arai ◽  
Hitoshi Hashimoto ◽  
...  

SNAP-23 is a plasma membrane-localized soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNARE) involved in Fc receptor (FcR)-mediated phagocytosis. However, the regulatory mechanism underlying its function remains elusive. Using phosphorylation-specific antibodies, SNAP-23 was found to be phosphorylated at Ser95 in macrophages. To understand the role of this phosphorylation, we established macrophage lines overexpressing the nonphosphorylatable S95A or the phosphomimicking S95D mutation. The efficiency of phagosome formation and maturation was severely reduced in SNAP-23-S95D–overexpressing cells. To examine whether phosphorylation at Ser95 affected SNAP-23 structure, we constructed intramolecular Förster resonance energy transfer (FRET) probes of SNAP-23 designed to evaluate the approximation of the N termini of the two SNARE motifs. Interestingly, a high FRET efficiency was detected on the membrane when the S95D probe was used, indicating that phosphorylation at Ser95 caused a dynamic structural shift to the closed form. Coexpression of IκB kinase (IKK) 2 enhanced the FRET efficiency of the wild-type probe on the phagosome membrane. Furthermore, the enhanced phagosomal FRET signal in interferon-γ–activated macrophages was largely dependent on IKK2, and this kinase mediated a delay in phagosome-lysosome fusion. These results suggested that SNAP-23 phosphorylation at Ser95 played an important role in the regulation of SNARE-dependent membrane fusion during FcR-mediated phagocytosis.

2012 ◽  
Vol 23 (24) ◽  
pp. 4849-4863 ◽  
Author(s):  
Chiye Sakurai ◽  
Hitoshi Hashimoto ◽  
Hideki Nakanishi ◽  
Seisuke Arai ◽  
Yoh Wada ◽  
...  

Synaptosomal associated protein of 23 kDa (SNAP-23), a plasma membrane–localized soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE), has been implicated in phagocytosis by macrophages. For elucidation of its precise role in this process, a macrophage line overexpressing monomeric Venus–tagged SNAP-23 was established. These cells showed enhanced Fc receptor–mediated phagocytosis. Detailed analyses of each process of phagocytosis revealed a marked increase in the production of reactive oxygen species within phagosomes. Also, enhanced accumulation of a lysotropic dye, as well as augmented quenching of a pH-sensitive fluorophore were observed. Analyses of isolated phagosomes indicated the critical role of SNAP-23 in the functional recruitment of the NADPH oxidase complex and vacuolar-type H+-ATPase to phagosomes. The data from the overexpression experiments were confirmed by SNAP-23 knockdown, which demonstrated a significant delay in phagosome maturation and a reduction in uptake activity. Finally, for analyzing whether phagosomal SNAP-23 entails a structural change in the protein, an intramolecular Förster resonance energy transfer (FRET) probe was constructed, in which the distance within a TagGFP2-TagRFP was altered upon close approximation of the N-termini of its two SNARE motifs. FRET efficiency on phagosomes was markedly enhanced only when VAMP7, a lysosomal SNARE, was coexpressed. Taken together, our results strongly suggest the involvement of SNAP-23 in both phagosome formation and maturation in macrophages, presumably by mediating SNARE-based membrane traffic.


2006 ◽  
Vol 290 (1) ◽  
pp. C11-C26 ◽  
Author(s):  
Elizabeth Sztul ◽  
Vladimir Lupashin

Coiled-coil and multisubunit tethers have emerged as key regulators of membrane traffic and organellar architecture. The restricted subcellular localization of tethers and their ability to interact with Rabs and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) suggests that tethers participate in determining the specificity of membrane fusion. An accepted model of tether function considers them molecular “bridges” that link opposing membranes before SNARE pairing. This model has been extended by findings in various experimental systems, suggesting that tethers may have other functions. Recent reports implicate tethers in the assembly of SNARE complexes, cargo selection and transit, cytoskeletal events, and localized attachment of regulatory proteins. A concept of tethers as scaffolding machines that recruit protein components involved in varied cellular responses is emerging. In this model, tethers function as integration switches that simultaneously transmit information to coordinate distinct processes required for membrane traffic.


2003 ◽  
Vol 14 (7) ◽  
pp. 2946-2958 ◽  
Author(s):  
H. Kumudu I. Perera ◽  
Mairi Clarke ◽  
Nicholas J. Morris ◽  
Wanjin Hong ◽  
Luke H. Chamberlain ◽  
...  

Insulin stimulates the movement of glucose transporter-4 (Glut4)–containing vesicles to the plasma membrane of adipose cells. We investigated the role of post-Golgi t-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in the trafficking of Glut4 in 3T3-L1 adipocytes. Greater than 85% of syntaxin 6 was found in Glut4-containing vesicles, and this t-SNARE exhibited insulin-stimulated movement to the plasma membrane. In contrast, the colocalization of Glut4 with syntaxin 7, 8, or 12/13 was limited and these molecules did not translocate to the plasma membrane. We used adenovirus to overexpress the cytosolic domain of these syntaxin's and studied their effects on Glut4 traffic. Overexpression of the cytosolic domain of syntaxin 6 did not affect insulin-stimulated glucose transport, but increased basal deGlc transport and cell surface Glut4 levels. Moreover, the syntaxin 6 cytosolic domain significantly reduced the rate of Glut4 reinternalization after insulin withdrawal and perturbed subendosomal Glut4 sorting; the corresponding domains of syntaxins 8 and 12 were without effect. Our data suggest that syntaxin 6 is involved in a membrane-trafficking step that sequesters Glut4 away from traffic destined for the plasma membrane. We speculate that this is at the level of traffic of Glut4 into its unique storage compartment and that syntaxin 16 may be involved.


2009 ◽  
Vol 284 (24) ◽  
pp. 16118-16125 ◽  
Author(s):  
Christopher M. Hickey ◽  
Christopher Stroupe ◽  
William Wickner

Yeast vacuole fusion requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), the Rab GTPase Ypt7p, vacuolar lipids, Sec17p and Sec18p, and the homotypic fusion and vacuole protein sorting complex (HOPS). HOPS is a multisubunit protein with direct affinities for SNAREs, vacuolar lipids, and the GTP-bound form of Ypt7p; each of these affinities contributes to HOPS association with the organelle. Using all-purified components, we have reconstituted fusion, but the Rab Ypt7p was not required. We now report that phosphorylation of HOPS by the vacuolar kinase Yck3p blocks HOPS binding to vacuolar lipids, making HOPS membrane association and the ensuing fusion depend on the presence of Ypt7p. In accord with this finding in the reconstituted fusion reaction, the inactivation of Ypt7p by the GTPase-activating protein Gyp1–46p only blocks the fusion of purified vacuoles when Yck3p is present and active. Thus, although Ypt7p may contribute to other fusion functions, its central role is to bind HOPS to the membrane.


2015 ◽  
Vol 26 (2) ◽  
pp. 305-315 ◽  
Author(s):  
Amy Orr ◽  
William Wickner ◽  
Scott F. Rusin ◽  
Arminja N. Kettenbach ◽  
Michael Zick

Fusion of yeast vacuoles requires the Rab GTPase Ypt7p, four SNAREs (soluble N-ethylmaleimide–sensitive factor attachment protein receptors), the SNARE disassembly chaperones Sec17p/Sec18p, vacuolar lipids, and the Rab-effector complex HOPS (homotypic fusion and vacuole protein sorting). Two HOPS subunits have direct affinity for Ypt7p. Although vacuolar fusion has been reconstituted with purified components, the functional relationships between individual lipids and Ypt7p:GTP have remained unclear. We now report that acidic lipids function with Ypt7p as coreceptors for HOPS, supporting membrane tethering and fusion. After phosphorylation by the vacuolar kinase Yck3p, phospho-HOPS needs both Ypt7p:GTP and acidic lipids to support fusion.


2017 ◽  
Vol 19 (34) ◽  
pp. 23194-23203 ◽  
Author(s):  
Debashis Majhi ◽  
Moloy Sarkar

With the aim to understand the role of the ionic constituents of ionic liquids (ILs) in their structural organization, resonance energy transfer (RET) studies between ionic liquids (donor) and rhodamine 6G (acceptor) have been investigated.


2003 ◽  
Vol 14 (3) ◽  
pp. 973-986 ◽  
Author(s):  
Annette M. Shewan ◽  
Ellen M. van Dam ◽  
Sally Martin ◽  
Tang Bor Luen ◽  
Wanjin Hong ◽  
...  

Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen 1 protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-solubleN-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of thetrans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.


Sign in / Sign up

Export Citation Format

Share Document