Resistance weight training during caloric restriction enhances lean body weight maintenance

1988 ◽  
Vol 47 (1) ◽  
pp. 19-25 ◽  
Author(s):  
D L Ballor ◽  
V L Katch ◽  
M D Becque ◽  
C R Marks
2019 ◽  
Vol 317 (2) ◽  
pp. E185-E193 ◽  
Author(s):  
Michal Kasher-Meron ◽  
Dou Y. Youn ◽  
Haihong Zong ◽  
Jeffery E. Pessin

Weight regain after weight loss is a well-described phenomenon in both humans and animal models of obesity. Reduced energy expenditure and increased caloric intake are considered the main drivers of weight regain. We hypothesized that adipose tissue with obesity memory (OM) has a tissue-autonomous lipolytic defect, allowing for increased efficiency of lipid storage. We utilized a mouse model of diet-induced obesity, which was subjected to 60% caloric restriction to achieve lean body weight, followed by a short period of high-fat diet (HFD) rechallenge. Age-matched lean mice fed HFD for the first time were used as the control group. Upon rechallenge with HFD, mice with OM had higher respiratory exchange ratios than lean mice with no OM despite comparable body weight, suggesting higher utilization of glucose over fatty acid oxidation. White adipose tissue explants with OM had comparable lipolytic response after caloric restriction; however, reduced functional lipolytic response to norepinephrine was noted as early as 5 days after rechallenge with HFD and was accompanied by reduction in hormone-sensitive lipase serine phosphorylation. The relative lipolytic defect was associated with increased expression of inflammatory genes and a decrease in adrenergic receptor genes, most notably Adrb3. Taken together, white adipose tissue of lean mice with OM shows increased sensitization to HFD compared with white adipose tissue with no OM, rendering it resistant to catecholamine-induced lipolysis. This relative lipolytic defect is tissue-autonomous and could play a role in the rapid weight regain observed after weight loss.


2020 ◽  
Author(s):  
Luisa Lopez Trinidad ◽  
Rosario Martínez ◽  
Garyfallia Kapravelou ◽  
Milagros Galisteo ◽  
Pilar Aranda ◽  
...  

Abstract Obesity is critically associated with the development of insulin resistance and related cardiovascular and kidney diseases. Several strategies for weight loss have been developed but most of them exhibit a post-intervention rebound effect. Here, we aimed to design combined weight-loss strategies of caloric restriction, physical exercise, and administration of a food-intake inhibitor that also accomplish the objectives of post-intervention lost-weight maintenance and improvement of cardiovascular and renal functionality. Diet-induced obesity (DIO) was generated in Sprague Dawley rats for 12 weeks to test the effects of single or combined strategies (i.e. caloric restriction, mixed training protocol, and/or administration of appetite suppressant) on caloric intake, body weight, cardiovascular and renal functionality resulting from a weight-loss intervention period of 3 weeks followed by 6 weeks of weight maintenance. Consumption of a high-fat diet (HFD) caused a significant increase in body weight (5th week of the experimental period) and led to the development of insulin resistance, cardiovascular, and renal alterations. The different interventions tested, resulted in a significant body weight loss and improved glucose metabolism, aerobic capacity, electrocardiographic parameters, vascular expression of adhesion molecules and inflammatory mediators, and renal functionality, reaching values similar to the control normocaloric group or even improving them. Successful maintenance of lost weight was achieved along a 6-week post-intervention period in addition to adequate health status. In conclusion, the weight-loss and maintenance intervention strategies tested were efficient at reversing the obesity-related alterations in body weight, glucose metabolism, aerobic capacity, cardiovascular and renal functionality. The beneficial action was very consistent for caloric restriction and physical exercise, whereas administration of a food-intake inhibitor complemented the effects of the prior interventions in some parameters like body weight or aerobic capacity, and showed specific actions in renal metabolism.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Salma Abedelmalek ◽  
Hamdi Chtourou ◽  
Nizar Souissi ◽  
Zouhair Tabka

The aim of this study was to evaluate the effect of caloric restriction on the immune and hormonal responses during exercise in judo athletes. In a randomised order, 11 male judokas (age: 20.45 ± 0.51; height: 1.71 ± 0.3 m; and body weight: 75.9 ± 3.1 kg) participate in this study during a period of weight maintenance (baseline) and after 7 days of caloric restriction (CR). All subjects performed the Special Judo Fitness Test (SJFT) during the two conditions. Values for nutrient intakes were obtained from a 7 d food record kept during a period of weight maintenance and after a 7-day food restriction (−5~6 MJ/day). Our results showed that CR resulted in significant decreases in body weight (P<0.05) and performance (P<0.05). However, heart rate and SJFT index (P<0.05) increase significantly during CR in comparison to baseline. Moreover, exercise leads to a significant increase in testosterone, cortisol, growth hormone (GH), leukocytes, neutrophils, TNF-α, and IL-6, in both CR and baseline conditions. Compared to baseline, TNF-αand IL-6 were significantly higher during CR condition (P<0.05). Additionally, CR leads to an increase in cortisol and GH (P<0.05) and a decrease in testosterone concentrations (P<0.05).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luisa M. Lopez Trinidad ◽  
Rosario Martinez ◽  
Garyfallia Kapravelou ◽  
Milagros Galisteo ◽  
Pilar Aranda ◽  
...  

AbstractObesity is critically associated with the development of insulin resistance and related cardiovascular and kidney diseases. Several strategies for weight loss have been developed but most of them exhibit a post-intervention rebound effect. Here, we aimed to design combined weight-loss strategies of caloric restriction, physical exercise, and administration of a CB1 receptor blocker to inhibit food intake that also accomplish the objectives of lost-weight maintenance and improvement of cardiovascular and renal function. Diet-induced obesity (DIO) was generated in Sprague Dawley rats for 12 weeks to test the effects of single or combined strategies (i.e. caloric restriction, mixed training protocol, and/or administration of appetite suppressant) on caloric intake, body weight, cardiovascular and renal functionality resulting from a weight-loss intervention period of 3 weeks followed by 6 weeks of weight maintenance. Consumption of a high-fat diet (HFD) caused a significant increase in body weight (5th week of the experimental period) and led to the development of insulin resistance, cardiovascular, and renal alterations. The different interventions tested, resulted in a significant body weight loss and improved glucose metabolism, aerobic capacity, electrocardiographic parameters, vascular expression of adhesion molecules and inflammatory mediators, and renal functionality, reaching values similar to the control normocaloric group or even improving them. Successful maintenance of lost weight was achieved along a 6-week maintenance period in addition to adequate health status. In conclusion, the weight-loss and maintenance intervention strategies tested were efficient at reversing the obesity-related alterations in body weight, glucose metabolism, aerobic capacity, cardiovascular and renal functionality. The beneficial action was very consistent for caloric restriction and physical exercise, whereas administration of a CB1 receptor blocker complemented the effects of the prior interventions in some parameters like body weight or aerobic capacity, and showed specific actions in renal status, increasing glomerular filtration rate and diuresis. Overall, the novelty of our study relies on the easy implementation of combined strategies for effective weight management that resulted in significant health benefits.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Damiano Caruso ◽  
Elisa Rosati ◽  
Nicola Panvini ◽  
Marco Rengo ◽  
Davide Bellini ◽  
...  

Abstract Background Patient body size represents the main determinant of parenchymal enhancement and by adjusting the contrast media (CM) dose to patient weight may be a more appropriate approach to avoid a patient over dosage of CM. To compare the performance of fixed-dose and lean body weight (LBW)-adapted contrast media dosing protocols, in terms of image quality and parenchymal enhancement. Results One-hundred cancer patients undergoing multiphasic abdominal CT were prospectively enrolled in this multicentric study and randomly divided in two groups: patients in fixed-dose group (n = 50) received 120 mL of CM while in LBW group (n = 50) the amount of CM was computed according to the patient’s LBW. LBW protocol group received a significantly lower amount of CM (103.47 ± 17.65 mL vs. 120.00 ± 0.00 mL, p < 0.001). Arterial kidney signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) and pancreatic CNR were significantly higher in LBW group (all p ≤ 0.004). LBW group provided significantly higher arterial liver, kidney, and pancreatic contrast enhancement index (CEI) and portal venous phase kidney CEI (all p ≤ 0.002). Significantly lower portal vein SNR and CNR were observed in LBW-Group (all p ≤ 0.020). Conclusions LBW-adapted CM administration for abdominal CT reduces the volume of injected CM and improves both image quality and parenchymal enhancement.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Moreno Zanardo ◽  
Fabio Martino Doniselli ◽  
Anastassia Esseridou ◽  
Massimiliano Agrò ◽  
Nicol Antonina Rita Panarisi ◽  
...  

Abstract Objectives Iodinated contrast media (ICM) could be more appropriately dosed on patient lean body weight (LBW) than on total body weight (TBW). Methods After Ethics Committee approval, trial registration NCT03384979, patients aged ≥ 18 years scheduled for multiphasic abdominal CT were randomised for ICM dose to LBW group (0.63 gI/kg of LBW) or TBW group (0.44 gI/kg of TBW). Abdominal 64-row CT was performed using 120 kVp, 100–200 mAs, rotation time 0.5 s, pitch 1, Iopamidol (370 mgI/mL), and flow rate 3 mL/s. Levene, Mann–Whitney U, and χ2 tests were used. The primary endpoint was liver contrast enhancement (LCE). Results Of 335 enrolled patients, 17 were screening failures; 44 dropped out after randomisation; 274 patients were analysed (133 LBW group, 141 TBW group). The median age of LBW group (66 years) was slightly lower than that of TBW group (70 years). Although the median ICM-injected volume was comparable between groups, its variability was larger in the former (interquartile range 27 mL versus 21 mL, p = 0.01). The same was for unenhanced liver density (IQR 10 versus 7 HU) (p = 0.02). Median LCE was 40 (35–46) HU in the LBW group and 40 (35–44) HU in the TBW group, without significant difference for median (p = 0.41) and variability (p = 0.23). Suboptimal LCE (< 40 HU) was found in 64/133 (48%) patients in the LBW group and 69/141 (49%) in the TBW group, but no examination needed repeating. Conclusions The calculation of the ICM volume to be administered for abdominal CT based on the LBW does not imply a more consistent LCE.


2021 ◽  
pp. 0310057X2096857
Author(s):  
Brian L Erstad ◽  
Jeffrey F Barletta

There is no consensus on which weight clinicians should use for weight-based dosing of neuromuscular blocking agents (NMBAs), as exemplified by differing or absent recommendations in clinical practice guidelines. The purpose of this paper is to review studies that evaluated various size descriptors for weight-based dosing of succinylcholine and non-depolarising NMBAs, and to provide recommendations for the descriptors of choice for the weight-based dosing of these agents in patients with obesity. All of the studies conducted to date involving depolarising and non-depolarising NMBAs in patients with obesity have assessed single doses or short-term infusions conducted in perioperative settings. Recognising that any final dosing regimen must take into account patient-specific considerations, the available evidence suggests that actual body weight is the size descriptor of choice for weight-based dosing of succinylcholine and that ideal body weight, or an adjusted (or lean) body weight, is the size descriptor of choice for weight-based dosing of non-depolarising NMBAs.


Sign in / Sign up

Export Citation Format

Share Document