scholarly journals Evaluation of Insecticides for Control of Aphids on Cotton in Mississippi, 1995

1996 ◽  
Vol 21 (1) ◽  
pp. 263-263
Author(s):  
Jack T. Reed ◽  
C. S. Jackson

Abstract Insecticides were evaluated at the Plant Science Research Farm, Mississippi State, MS, in a RCB design with 4 replications. Plot size was 4 rows wide (38 inch spacing) by 50 ft long with 4 unsprayed buffer rows between plots. Insecticides were applied on 12 Jul with a high clearance spray tractor equipped with two Spraying Systems TX4 hollow cone nozzles spaced at 19 inches and calibrated for 5 gpa at a pressure of 40 psi and a speed of 3.5 mph. Carrier of the insecticides was water, with an initial pH of 8.0. Samples were taken from 10 leaves per plot at each of 3 levels on the plant: upper (4th true leaf), mid (mainstem leaf located a third down the plant), and lower (leaf on the bottom of the plant). Aphids were counted on one side of the leaf midvein (1/2 leaf) only.

1996 ◽  
Vol 21 (1) ◽  
pp. 267-268
Author(s):  
Jack T. Reed ◽  
C. S. Jackson

Abstract Insecticides were evaluated at the Plant Science Research Farm, Mississippi State, MS, in a RCB design with 4 replications. Plot size was 1 row wide by 50 ft long with 7 unsprayed buffer rows between plots. Insecticides were applied on 27 Jun with a CO2-powered backpack sprayer equipped with a single Spraying Systems TX4 hollow cone nozzle and calibrated for 5 gpa at a pressure of 38 psi and a speed of 4 mph. Carrier of the insecticides was water, with an initial pH of 8.0. This trial was applied under very wet soil conditions, high humidity and steady wind conditions. The nozzle was held to allow the wind to drift the spray onto the plants with the upper third of the plant as the target. Plant bugs were collected the morning of application by sweeping wild flowers with a 15 inch diam sweep net. Fine mesh cloth cages were then placed on 2 plants per plot and fastened at the mainstem with ponytail holders. The plants with sleeve cages were cut and returned to the laboratory 24 h after infestation and examined for dead and live plant bugs. Because of threatening rain, instead of caging bugs on the plants, 4 leaf disks per plot were collected 48 h after spray application, and 2 leaf disks per plot 72 h after spray, placed in 11 X 50 mm petri dishes on moistened filter paper and infested with 5 plant bugs each. Mortality data from these petri dishes was taken at 96 h after insecticide application. Plant bugs not moving when prodded were considered dead.


1998 ◽  
Vol 23 (1) ◽  
pp. 238-239
Author(s):  
Michael S. Howell ◽  
Jack T. Reed

Abstract Insecticides were evaluated at North Mississippi Research and Extension Center, Verona, MS, in a RCB design with 4 replications. Plot size was 4 rows wide (38-inch row spacing) by 50 ft long with 4 untreated rows between plots and a 10-ft planted buffer at the end of each plot. Insecticides were applied on 8 and 11 Jul with a high-clearance spray tractor equipped with two Spraying Systems TX4 hollow-cone nozzles per row and calibrated for 5 gpa at a pressure of 40 psi at 4 mph. Carrier of the insecticide was water. Samples were taken from 10 leaves per plot at each of two levels on the plant: upper (first fully expanded leaf), and mid (mainstem leaf located one-third down the plant). Aphids were counted on the underside of each leaf. Throughout the growing season, there was ad-equate rainfall for crop development. Yield (lb of seed cotton per acre) was determined by mechanically harvesting the center two rows of each plot, and measuring the actual area picked.


2021 ◽  

Abstract The correct design, analysis and interpretation of plant science experiments is imperative for continued improvements in agricultural production worldwide. The enormous number of design and analysis options available for correctly implementing, analyzing and interpreting research can be overwhelming. Statistical Analysis System (SAS®) is the most widely used statistical software in the world and SAS® OnDemand for Academics is now freely available for academic insttutions. This is a user-friendly guide to statistics using SAS® OnDemand for Academics, ideal for facilitating the design and analysis of plant science experiments. It presents the most frequently used statistical methods in an easy-to-follow and non-intimidating fashion, and teaches the appropriate use of SAS® within the context of plant science research. This book contains 21 chapters that covers experimental designs and data analysis protocols; is presented as a how-to guide with many examples; includes freely downloadable data sets; and examines key topics such as ANOVA, mean separation, non-parametric analysis and linear regression.


2018 ◽  
Vol 6 (5) ◽  
Author(s):  
Md Azizul Islam ◽  
Pulak Maitra ◽  
Dipa Mandal

The biotic stresses are one of the main causes to the loss of crops, and their development, growth and productivity in the environment. Polyamines are positively charge compounds that have active potential power to DNA, RNA and protein (negative charge compounds), are exist in all living life for their low molecular weight and smallness. Naturally occurring polyamines are involved biotic stress response especially different plants disease and contribute the survival of plant in environment. They contribute a lot of different biological functions, such as controlling the cell cycle, protecting the cell, involve in gene expression, cell signaling replication, transcription, translation and membrane stabilization. This article specially highlights the recent advancement of polyamines in modern plant science research their impact of biotic stress specially the diseases caused by different microorganisms (bacteria, fungus) and creature systems.


BioScience ◽  
1966 ◽  
Vol 16 (7) ◽  
pp. 456-463
Author(s):  
Perry R. Stout ◽  
C. A. Price

1995 ◽  
Vol 20 (1) ◽  
pp. 197-197 ◽  
Author(s):  
J. B. Graves ◽  
B. R. Leonard ◽  
C. A. White

Abstract Three tests, each consisting of 4-5 insecticide treatments were replicated 4 times in a RCBD at the Macon Ridge Branch of the Northeast Research Station, Winnsboro, LA. Cotton was planted 1 Jul into plots 4 rows (40 inch centers) by 30 ft. Treatments for Tests 1, 2 and 3 were applied on 2, 13 and 14 Sep, respectively, with a high clearance sprayer calibrated to deliver 11.5 gal total spray/acre through Teejet X-8 hollow cone nozzles (2/row) at 46 psi. Treatment efficacy was determined by taking a 10 sweep (standard 15 inch diam net) sample from each plot. Sweep samples were usually taken 2, 4-5 and 6-7 DAT on rows 1, 2 or 3, respectively. The test areas received 0.20, 0.67 and 1.1 inches rainfall on 6, 15 and 16 Sep, respectively.


1996 ◽  
Vol 21 (1) ◽  
pp. 191-191
Author(s):  
P. A. Stansly ◽  
J. M. Conner

Abstract Greenhouse raised tomato seedings “Florasette” were planted 8 Sep. 1994, 18 inches within the row on six subirrigated beds, 240 ft long, 32 ft wide on 6 ft centers. Beds had been fumigated with methyl bromide + chloropicrin 67/33 at a rate of 2201b/acre and mulched with whiteside polyethylene. Each of 4, 125 ft blocks was divided into 4, 3-row plots 25 ft long plus 2.5 ft walkways. Plants were sprayed weekly with an alternating combination of Maneb 80 WP at 1 lb/acre plus Kocide 101 at 31b/acre and Bravo 720 at 1.5 pt/acre for disease control. Plants were inoculated on 5 Oct with beet armyworm and on 19 Oct with SAW on 19 Oct to supplement natural populations by applying 2-3 neonates (2-3 per plant) in Grito-O-Cobs (20-40 mesh) to foliage with a “bazooka” gun. Treatments and spray schedules are given in Tables 1 and 2. Spray was delivered weekly for 7 weeks starting in 21 Oct using a high clearance sprayer equipped with yellow hollow cone Albuz nozzles at 200 psi pump pressure. Configuration for the first 4 applications was 9 nozzles per row, one overhead and four each side calibrated to deliver 89 GPA. An additional nozzle per side drop was added for the last 3 applications to deliver 110 GPA. Larval populations were evaluated weekly from 21 Oct to 29 Nov on 6 ft of row from the center of each 3-row plot in two-plant (between-stake) units. Larvae were counted in 3 size categories: small, medium and large but only medium and large are reported. Fruit of marketable size was harvested on 21 Nov & 02 Dec and graded on a commercial table with weights and numbers recorded.


1995 ◽  
Vol 20 (1) ◽  
pp. 198-198
Author(s):  
J. B. Graves ◽  
J. H. Pankey ◽  
B. R. Leonard ◽  
C. A. White

Abstract Six insecticide treatments were evaluated at the Macon Ridge Branch of the Northeast Research Station, Winnsboro, LA, to determine their efficacy in controlling the bollworm/tobacco budworm complex and boll weevils. Cotton was planted 18 Jun in plots consisting of 4 rows (40 inch centers) × 50 ft. Treatments were arranged in a RCBD with 4 replications. Treatments were applied with a high clearance sprayer calibrated to deliver 6 gal total spray/acre through Teejet X-8 hollow cone nozzles (2/row) at 46 psi. Insecticides were applied on 22, 26 Aug and 1 Sep against established populations of bollworms, tobacco budworms (primarily tobacco budworms) and boll weevils. Efficacy of the various treatments against these species was determined on 25, 31 Aug and 7 Sep by examining 50 squares/plot for evidence of feeding damage. Also numbers of larvae per 50 squares were recorded for the bollworm/tobacco budworm complex. The plots were mechanically harvested on 25 Oct to determine seed cotton yields. The test area received 0.57 and 0.20 inches rainfall on 1 and 6 Sep, respectively.


1998 ◽  
Vol 23 (1) ◽  
pp. 227-228
Author(s):  
J. H. Fife ◽  
B. R. Leonard ◽  
K. D. Torrey ◽  
J. B. Graves

Abstract The efficacy of selected insecticide treatments was evaluated against an established infestation of BW at the Macon Ridge location of the Northeast Research Station. Cotton seed was planted 29 May in plots consisting of 4 rows (40-inch centers) X 50 ft. Treatments were arranged in a RCB design and replicated 6 times. Applications were made with a high-clearance sprayer and CO2-charged system calibrated to deliver 6 gpa through Teejet TX-8 hollow-cone nozzles (2/row) at 47 psi. Insecticides were applied on 6 Aug. Treatments were evaluated using two methods. In the first, 5 BW larval infested bolls were removed from each plot 2 h after treatment, placed in 20-ml plastic vials, and transported to the laboratory. Mortality of BW larvae was determined at 2 DAT and 4 DAT. In the second procedure, a field sample of 100 random bolls was taken from each plot and examined for damage and live larvae at 5 DAT. Rainfall did not influence the efficacy of these treatments. Data were analyzed with ANOVA and means were separated according to DMRT.


Sign in / Sign up

Export Citation Format

Share Document