DETERMINATION OF MINERAL FIBRE IN HUMAN LUNG TISSUE BY LIGHT MICROSCOPY AND TRANSMISSION ELECTRON MICROSCOPY

Author(s):  
Glenn R. Smith ◽  
Krishna Seshan ◽  
Jerome J. Wesolowski ◽  
Axel G. Berner

Determination of the mass concentration of quartz in small biopsy specimens for clinical diagnostic purposes often cannot be performed by x-ray diffraction and light microscopy. A technique utilizing transmission electron microscopy (TEM) was used to determine the quartz concentration in a human lung specimen taken from a patient suspected of having silicosis.The sample was prepared for examination by low temperature incineration in an oxygen plasma. The inorganic residue was suspended in 0.5 percent Parlodion in amyl acetate. Grids were coated with the sample suspension and subsequently shadowed with a thin film of carbon. Standard quartz particles were prepared in a similar manner.


Author(s):  
John H. L. Watson ◽  
Jessica Goodwin ◽  
E. Osborne Coates

Biopsies of lung were taken at operation from a patient with semi-acute diffuse pulmonary infiltrates for study by TEM and SEM. Tissue by light microscopy showed non-caseating granulomas consistent with sarcoidosis. Clinical evidence suggested a hypersensitivity reaction related to inhalation of substance of undetermined nature. Samples were fixed in glutaraldehyde, cacodylate-buffered. They were critical point dried and coated with Au-Pd for SEM, and were handled appropriately for TEM in Araldite. Sections were contrasted with uranyl acetate and lead citrate.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Bruce Mackay

The broadest application of transmission electron microscopy (EM) in diagnostic medicine is the identification of tumors that cannot be classified by routine light microscopy. EM is useful in the evaluation of approximately 10% of human neoplasms, but the extent of its contribution varies considerably. It may provide a specific diagnosis that can not be reached by other means, but in contrast, the information obtained from ultrastructural study of some 10% of tumors does not significantly add to that available from light microscopy. Most cases fall somewhere between these two extremes: EM may correct a light microscopic diagnosis, or serve to narrow a differential diagnosis by excluding some of the possibilities considered by light microscopy. It is particularly important to correlate the EM findings with data from light microscopy, clinical examination, and other diagnostic procedures.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


2021 ◽  
Vol 123 (6) ◽  
pp. 151761
Author(s):  
Tasuku Hiroshige ◽  
Kei-Ichiro Uemura ◽  
Shingo Hirashima ◽  
Kiyosato Hino ◽  
Akinobu Togo ◽  
...  

2009 ◽  
Vol 15 (S2) ◽  
pp. 134-135 ◽  
Author(s):  
C Phatak ◽  
E Humphrey ◽  
M DeGraef ◽  
A Petford-Long

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


Sign in / Sign up

Export Citation Format

Share Document