scholarly journals Differential binding affinity of mutated peptides for MHC class I is a predictor of survival in advanced lung cancer and melanoma

2018 ◽  
Vol 29 (1) ◽  
pp. 271-279 ◽  
Author(s):  
E. Ghorani ◽  
R. Rosenthal ◽  
N. McGranahan ◽  
J.L. Reading ◽  
M. Lynch ◽  
...  
2011 ◽  
Vol 74 (5) ◽  
pp. 728-743 ◽  
Author(s):  
Vivekananda Shetty ◽  
Gomathinayagam Sinnathamby ◽  
Zacharie Nickens ◽  
Punit Shah ◽  
Julie Hafner ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Chongming Jiang ◽  
Evelien Schaafsma ◽  
Wei Hong ◽  
Yanding Zhao ◽  
Ken Zhu ◽  
...  

BackgroundNeoantigens are presented on the cancer cell surface by peptide-restricted human leukocyte antigen (HLA) proteins and can subsequently activate cognate T cells. It has been hypothesized that the observed somatic mutations in tumors are shaped by immunosurveillance.MethodsWe investigated all somatic mutations identified in The Cancer Genome Atlas (TCGA) Skin Cutaneous Melanoma (SKCM) samples. By applying a computational algorithm, we calculated the binding affinity of the resulting neo-peptides and their corresponding wild-type peptides with the major histocompatibility complex (MHC) Class I complex. We then examined the relationship between binding affinity alterations and mutation frequency.ResultsOur results show that neoantigens derived from recurrent mutations tend to have lower binding affinities with the MHC Class I complex compared to peptides from non-recurrent mutations. Tumor samples harboring recurrent SKCM mutations exhibited lower immune infiltration levels, indicating a relatively colder immune microenvironment.ConclusionsThese results suggested that the occurrences of somatic mutations in melanoma have been shaped by immunosurveillance. Mutations that lead to neoantigens with high MHC class I binding affinity are more likely to be eliminated and thus are less likely to be present in tumors.


2021 ◽  
Author(s):  
Janine-Denise Kopicki ◽  
Ankur Saikia ◽  
Stephan Niebling ◽  
Christian G&uumlnther ◽  
Maria M. Garcia-Alai ◽  
...  

An essential element of adaptive immunity is the selective binding of peptide antigens by major histocompatibility complex (MHC) class I proteins and their presentation to cytotoxic T lymphocytes on the cell surface. Using native mass spectrometry, we here analyze the binding of peptides to an empty disulfide-stabilized HLA-A*02:01 molecule. This novel approach allows us to examine the binding properties of diverse peptides. The unique stability of our MHC class I even enables us to determine the binding affinity of complexes, which are suboptimally loaded with truncated or charge-reduced peptides. Notably, a unique erucamide adduct decouples affinity analysis from peptide identity alleviating issues usually attributed to clustering. We discovered that two anchor positions at the binding surface between MHC and peptide can be stabilized independently and further analyze the contribution of other peptidic amino acids on the binding. We propose this as an alternative, likely universally applicable method to artificial prediction tools to estimate the binding strength of peptides to MHC class I complexes quickly and efficiently. This newly described MHC class I-peptide binding affinity quantitation represents a much needed orthogonal, confirmatory approach to existing computational affinity predictions and has the potential to eliminate binding affinity biases and thus accelerate drug discovery in infectious diseases autoimmunity, vaccine design, and cancer immunotherapy.


2017 ◽  
Vol 199 (9) ◽  
pp. 3360-3368 ◽  
Author(s):  
Vanessa Jurtz ◽  
Sinu Paul ◽  
Massimo Andreatta ◽  
Paolo Marcatili ◽  
Bjoern Peters ◽  
...  

1996 ◽  
Vol 73 (2) ◽  
pp. 148-153 ◽  
Author(s):  
P Korkolopoulou ◽  
L Kaklamanis ◽  
F Pezzella ◽  
AL Harris ◽  
KC Gatter

Sign in / Sign up

Export Citation Format

Share Document